期刊文献+

惯导工具误差分离与折合的支持向量机方法 被引量:7

Separation and Conversion for Guidance Instrumentation Systematic Error Using Support Vector Machines Regression
下载PDF
导出
摘要 制导工具误差分离与折合是导弹精度评定中的重要问题。由于工具误差分离存在着很强的复共线性,传统的最小二乘方法与主成分方法不能很好的解决这一问题。提出了利用支持向量机方法获得工具误差系数估计的思想,并将估计结果应用用到弹道误差折合中,与最小二乘和主成分方法相比,支持向量机获得的误差系数估计与真值更加接近,分离残差较小,折合得到的全程弹道遥外差更加接近于真实值。 The separation and conversion of guidance instrumentation systematic error (GISE) play a vital role in the missile precision analysis. Because the separation for GISE is an almost singular regression problem, the classic least square method and principal component method are not satisfactorily for solving the problem. A new method for separating and converting of guidance instrumentation error was proposed which is the support vector machines. The results show that the new method has a higher precision and higher performance than least square method and principal component method.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第10期2177-2179,2182,共4页 Journal of System Simulation
关键词 精度评定 制导工真误差 最小二乘方法 主成分分析 支持向量机 precision assessment guidance instrumentation error the least squares method principal component analysis support vector machines
  • 相关文献

参考文献7

  • 1张金槐,蔡洪编著..飞行器试验统计学[M].长沙:国防科技大学出版社,1995:397.
  • 2Vapnik V N.The Nature of Statistical Learning Theory[M].NY:Springer-Verlag,1995. 被引量:1
  • 3Burges C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery (S1384-5810),1998,2(2):145-153 被引量:1
  • 4Palaniswami M,Shilon A.Adaptive Support Vector Machines for Regression[C] //Proceedings of the 9th International Conference on Neural Information Processing (ICONIP'02).2002. 被引量:1
  • 5Duncan McKay,Colin Fyfe.Probability Prediction Using Support Vector Machines[C]// 4th International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technology.Brighton UK Press.2000. 被引量:1
  • 6MacKay D J C.Probable Networks and Plausible Predictions:A Review of Practical Bayesian Methods for Supervised Neural Networks[M].Computations in neural Systems 6,Networks,1995. 被引量:1
  • 7Aki Vehtari,Jouko Lampinen.Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities[J].Helsinki University of Technology,Laboratory of Computational Engineering publications,2001. 被引量:1

同被引文献128

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部