期刊文献+

基于贝叶斯框架下LS-SVM的时间序列预测模型 被引量:11

Time Series Prediction based on LS-SVM within the Bayesian Framework
原文传递
导出
摘要 将贝叶斯证据框架应用于最小二乘支持向量机模型参数的选择,建立起时间序列的非线性预测模型.在推断的第一层,选择模型的参数,在推断的第二层,选择模型超参数,第三层,选择模型的核参数,并选择相关输入变量.该模型应用于加州电力市场现货价格的预测,取得了较好的效果. In this paper, we applied the Bayesian evidence framework to least squared support vector machine (LS- SVM) regression in order to infer nonlinear models for predicting a time series. On the first level of inference, model parameters were selected and on the second level the hyperparameters were selected. The kernel parameter were tuned on the third level framework, and on this level the relevant inputs were selected. We demonstrated the utility of this approach on prices prediction of California electricity market.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2007年第5期142-146,共5页 Systems Engineering-Theory & Practice
关键词 最小二乘支持向量机 贝叶斯框架 预测 电价 LS-SVM Bayesian framework prediction electricity price
  • 相关文献

参考文献7

  • 1Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1999. 被引量:1
  • 2Suykens J A K.Least squares support vector machines for classification and nonlinear modeling[J].Neural Network World,2000,10(1):29-48. 被引量:1
  • 3Nello Cristianini,John Shawe-Taylor.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].Beijing:Publishing House of Electronics Industry,2004. 被引量:1
  • 4Kowk J T.The evidence framework applied to support vector machines[J].IEEE Trans on Neural Network,2000,11 (5):1162 -1173. 被引量:1
  • 5阎威武,常俊林,邵惠鹤.一种贝叶斯证据框架下支持向量机建模方法的研究[J].控制与决策,2004,19(5):525-528. 被引量:21
  • 6MacKay D J C.Bayesian interpolation[J].Neural Computation,1992,4(3):415-447. 被引量:1
  • 7Yamin H Y,Shahidehpour S M,Li Z.Adaptive short-term electricity price forecasting using artificial neural networks in the restructured power markets[J].Electrical Power and Energy Systems,2004,26(8):571-581. 被引量:1

二级参考文献4

  • 1[1]Vapnik V. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag, 1999. 被引量:1
  • 2[3]Mackay D J C. Probable network and plausible predictions-A review of practical Bayesian methods for supervised neural networks [J]. Network Computation in Neural Systems, 1995, 6: 469-505. 被引量:1
  • 3[4]Kowk J T. The evidence framework applied to support vector machines [J]. IEEE Trans on Neural Network,2000, 11(5): 1162-1173. 被引量:1
  • 4[5]Suykens J A K. Nonlinear modeling and support vector machines [A]. Proc of the 18th IEEE Conf on Instrumentation and Measurement Technology [C].Budapest, 2001. 287-294. 被引量:1

共引文献20

同被引文献117

引证文献11

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部