期刊文献+

基于改进微粒群算法重建炉膛截面温度场 被引量:3

Research on Section Temperature Field Reconstrction of Coal Power Fired Boiler Based on Improved Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 煤粉锅炉炉膛火焰温度场的测量是燃烧调整的基础,对于锅炉燃烧经济性、安全性诊断以及优化运行有着重要的意义。文中利用4个面阵CCD镜头来获取火焰图像的数字信号,在分析测试系统物理模型和炉膛火焰温度分布规律的基础上,建立了非线性优化数学模型,并对其利用基于向量评估的改进微粒群算法进行了求解。为验证测试模型的正确性,进行了数值模拟,并且,在某电站350MW锅炉上进行了多负荷工况下的实际测试。结果表明,重建的温度场可以作为燃烧诊断和优化运行的重要依据。 Flame temperature field distribution measurement is very important for the regulation, diagnosis and optimization of a coal power fired boiler. With 4 charge-coupled device (CCD) cameras, digital data of a flame image can be obtained, base on optic geometric and heat transfer theory, a section temperature field reconstruction technique combined with improved vector evaluated particle swarm optimization (VEPSO) algorithm was developed. To validate this model, numeric simulations were carried out and a series of experiments were performed in a 350MW power plant. The results indicate the model's reliability and prospective application in the diagnosis and optimization of a boiler.
出处 《中国电机工程学报》 EI CSCD 北大核心 2007年第14期13-17,共5页 Proceedings of the CSEE
关键词 微粒群算法 多目标优化 截面温度场 电荷电偶器件 火焰图像 particle swarm optimization algorithm multi-object optimization section temperature field chargecoupled device flame image
  • 相关文献

参考文献20

二级参考文献57

共引文献144

同被引文献34

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部