期刊文献+

等离子体熔射粉末颗粒飞行特性研究 被引量:1

Study of Plasma Spray Particulate Heating and Movement by the Lattice Boltzmann Method
下载PDF
导出
摘要 分别采用7速正六边形Lattice Boltzmann方法计算等离子体射流和随机算法计算颗粒运动,对等离子体射流中铁铬镍合金单个颗粒及颗粒群的热运动状态进行了较为详细的模拟研究,并采用芬兰Oseir公司热喷涂在线监测及诊断设备Spraywatch对不同电压下距射流出口200mm处颗粒平均速度和温度进行了实验测量。结果表明:模拟与实验符合较好,本模型计算速度比传统的方法快;颗粒直径大小、入口位置和运动轨迹决定颗粒的速度和温度变化,其他条件相同时,中心入射的大颗粒粉末可以比半径处入射的小颗粒粉末获得更高的速度和温度;通过计算得到了铁铬镍合金粉末颗粒在等离子体射流中稳定高速高温飞行的位置区间。 The paper used the hexagonal 7-speed Latttice Boltzmann Method to calculate plasma spray jets and the probabilistic algorithm to compute particulate movement. Furthermore, it simulated the thermo-movement of a single or group particulate of iron-chromium-nickel alloy in plasma spray jets. Using the Spraywatch, a brand of on-line hot-spray monitoring and diagnosis equipment manufactured by Oseir Company, Finland, it carried out an experi- mental measurement of the average velocity and temperature of a particulate under different voltages at 200 mm away from the outlets of spray jets. The results indicate: the simulation is in good agreement with the experiment; the method's calculation speed is faster than that of conventional methods; the diameter, entry position and movement track of the particulate decide its velocity and temperature changes; if other conditions are the same, the big particulates through central in-spray gain higher velocity and temperature than the small particulates in-sprayed at the radius of a spray outlet. The calculation produces the position range within which the iron-chromium-nickel alloy particulates move in plasma spray jets at high velocity and temperature.
出处 《机械科学与技术》 CSCD 北大核心 2007年第1期16-20,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家十五863项目(2003AA305801) 湖北省教育厅项目(B200534005)资助
关键词 等离子体熔射 LATTICE BOLTZMANN方法 粉末热运动 随机算法 plasma spray Lattice Boltzmann method particulate movement and heating probabilistic algorithm
  • 相关文献

参考文献8

二级参考文献30

  • 1[1]Scott D A, Kovitya P and Haddad G N 1989 J. Appl. Phys. 66 5232 被引量:1
  • 2[2]Westhoff R 1992 PhD Thesis Department of Materials Sciences and Engineering, M I T 被引量:1
  • 3[3]Murphy A B and Kovitya P 1993 J. Appl. Phys. 73 4759 被引量:1
  • 4[4]Bauchire J M, Gonzalez J J and Gleizes A 1997 Plasma Chem.Plasma Process 17 409 被引量:1
  • 5[5]Li H P and Chen X 2001 J.Phys. D:Appl. Phys. 282494 被引量:1
  • 6[6]Li H P and Chen X 2002 Chin. Phys. 11 44 被引量:1
  • 7[7]Li H P, Pfender E and Chen X 2003 J. Phys. D: Appl. Phys. 361084 被引量:1
  • 8[8]Klinger L, Vos J B and Appert K, submitted to J. Phys. D: Appl. 被引量:1
  • 9[9]Gonzalez J J, Freton P and Gleizes A 2002 J. Phys. D: Appl. Phys.35 3181 被引量:1
  • 10[10]Launder B E and Spalding D B 1972 Lectures in Mathematical Models of Turbulence (New York:Academic) 被引量:1

共引文献37

同被引文献22

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部