期刊文献+

Doo-Sabin细分曲面的圆角算法

Fillet Operations with the Doo-Sabin Subdivision Surface
下载PDF
导出
摘要 给出了常用旋转曲面的细分表示方法并以此提出了Doo-Sabin曲面的圆角算法。首先根据给定的圆角值插入圆角线并重新进行特征标识和权值分配,产生新的控制网格,再用改进的Doo-Sabin模式细分,从而生成有圆角特征的细分曲面。即使多条圆角边交于一点且采用不同的圆角值,也能得到G1连续的过渡曲面。本算法可以实现多面体曲面的等半径圆角过渡;对一般曲面,也可以取得较好的过渡结果。 The paper presented a subdivision representation method for common surfaces of revolution and then proposed the fillet operations for the Doo-Sabin subdivision surface. First, it generated a new control mesh by inserting fillet lines according to given fillet values and by reassigning sharp features and resetting weights; then it used the improved Doo-Sabin subdivision model to generate subdivision surfaces with fillet features. Despite the facts that many fillet edges may meet at a vertex and that different fillet values may be adopted, the paper still obtains round surfaces with G^1 continuity. These operations can round polyhedral surfaces with fillets of constant radius ; they also have fairly good round effect on other types of surface.
作者 李涛 周来水
出处 《机械科学与技术》 CSCD 北大核心 2007年第2期177-180,共4页 Mechanical Science and Technology for Aerospace Engineering
基金 教育部高校优秀青年教师教学科研奖励计划项目资助
关键词 圆角值 圆角边 Doo-Sabin细分曲面 fillet value fillet edge Doo-Sabin subdivision surface
  • 相关文献

参考文献9

  • 1Ma W.Subdivision surfaces for CAD--an overview[J].Computer Aided Design,2005,37(7):693-709. 被引量:1
  • 2Catmull E,Clark J.Recursively generated B-spline surfaces on arbitrary topological meshes[J].Computer Aided Design,1978,10(6):350-355. 被引量:1
  • 3Doo D,Sabin M.Behavior of recursive division surfaces near ext-raordinary points[J].Computer Aided Design,1978,10(6). 被引量:1
  • 4Biermann H,et al.Sharp features on multiresolution subdivision surfaces[J].Graphical Models,2002,64(2):61-77. 被引量:1
  • 5李涛,周来水,刘浩.Doo-Sabin细分模式的尖锐特征造型[J].计算机辅助设计与图形学学报,2006,18(6):760-766. 被引量:5
  • 6DeRose T,Kass M,Truong T.Subdivision surfaces in character animation[A].In:Computer Graphics Proceedings,Annual Conference Series[C],ACM SIGGRAPH,New York,1998. 被引量:1
  • 7Xu Z,Kondo K.Fillet operations with recursive subdivision surfaces[J].The Institute of Image Electronics Engineers of Japan,1999,28(4):329-338. 被引量:1
  • 8Morin G,Warren J,Weimer H.A subdivision scheme for surfaces of revolution[J].Computer Aided Geometric Design,2001,18 (5):483-502. 被引量:1
  • 9施法中编著..计算机辅助几何设计与非均匀有理B样条 CAGD & NURBS[M].北京:北京航空航天大学出版社,1994:520.

二级参考文献16

  • 1Catmull E,Clark J.Recursively generated B-spline surfaces on arbitrary topological meshes[J].Computer-Aided Design,1978,10(6):350-355 被引量:1
  • 2Doo D,Sabin M.Behavior of recursive division surfaces near extraordinary points[J].Computer-Aided Design,1978,10(6):356-360 被引量:1
  • 3Loop C.Smooth subdivision surfaces based on triangles[D].Salt Lake City:University of Utah,1987 被引量:1
  • 4Sederberg T,Zheng J,et al.Non-uniform recursive subdivision surfaces[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,New York,1998:387-394 被引量:1
  • 5Ma W.Subdivision surfaces for CAD-an overview[J].Computer-Aided Design,2005,37(7):693-709 被引量:1
  • 6Biermann H,Levin A,Zorin D.Piecewise-smooth subdivision surfaces with normal control[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,New York,2000:113-120 被引量:1
  • 7Biermann H,et al.Sharp features on multi-resolution subdivision surfaces[J].Graphical Models,2002,64(2):61-77 被引量:1
  • 8Hoppe H,DeRose T,et al.Piecewise smooth surface reconstruction[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,New York,1994:295-302 被引量:1
  • 9DeRose T,Kass M,Truong T.Subdivision surfaces in character animation[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,New York,1998:85-94 被引量:1
  • 10Nasri A.Polyhedral subdivision methods for free form surfaces[J].ACM Transactions on Graphics,1987,6(1):29-73 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部