摘要
给出了常用旋转曲面的细分表示方法并以此提出了Doo-Sabin曲面的圆角算法。首先根据给定的圆角值插入圆角线并重新进行特征标识和权值分配,产生新的控制网格,再用改进的Doo-Sabin模式细分,从而生成有圆角特征的细分曲面。即使多条圆角边交于一点且采用不同的圆角值,也能得到G1连续的过渡曲面。本算法可以实现多面体曲面的等半径圆角过渡;对一般曲面,也可以取得较好的过渡结果。
The paper presented a subdivision representation method for common surfaces of revolution and then proposed the fillet operations for the Doo-Sabin subdivision surface. First, it generated a new control mesh by inserting fillet lines according to given fillet values and by reassigning sharp features and resetting weights; then it used the improved Doo-Sabin subdivision model to generate subdivision surfaces with fillet features. Despite the facts that many fillet edges may meet at a vertex and that different fillet values may be adopted, the paper still obtains round surfaces with G^1 continuity. These operations can round polyhedral surfaces with fillets of constant radius ; they also have fairly good round effect on other types of surface.
出处
《机械科学与技术》
CSCD
北大核心
2007年第2期177-180,共4页
Mechanical Science and Technology for Aerospace Engineering
基金
教育部高校优秀青年教师教学科研奖励计划项目资助