期刊文献+

应用关联规则挖掘构建人小脑发育的基因表达关联网络 被引量:2

Constructing Association Networks from Development Cerebella Microarray Data Based on Association Rule Mining
下载PDF
导出
摘要 目的构建小脑发育过程中基因之间的表达调控关联网络。方法应用关联规则(Association Rules)挖掘技术和GO(Gene Ontology)数据库对人胎儿小脑发育的基因芯片数据进行分析处理。结果根据胎儿6个不同发育时间段的基因芯片数据从10080个基因(或EST片段)中筛选出110个表达变异较大的基因作为输入,得到形如LHSRHS的关联规则5000多条;从中选择10个功能已知且在关联规则中出现频率较高的基因作为构建关联网络的基因。根据包含这10个基因的关联规则,构建出两张基因表达关联网络图。结论利用关联规则挖掘技术构建的小脑发育基因表达关联网络在一定程度上能够描述小脑发育过程中基因之间的关联关系。 Objective The purpose of this study was to construct association networks from fetuses development cerebella microarray data. Methods Using association rules mining technique and GO (Gene Ontology) to analyze the microarray data. Results We got 110 genes or ESTs whose expression levels varied significantly on 6 periods of fetuses' cerebella development from total 10080 genes or ESTs. As a result, about 5 000 association rules formed as LHS→RHS were found. According to all association rules of 10 selected genes whose functions were known, two figures about association networks of genes expression were drawn. Conclusion The association networks of fetuses' cerebella development which based on association rules were somewhat able to describe the relationship among genes during cerebella development.
出处 《中国卫生统计》 CSCD 北大核心 2007年第2期117-119,123,共4页 Chinese Journal of Health Statistics
基金 国家自然基金资助课题(编号:60371034)
关键词 关联规则 基因芯片数据 关联网络 小脑发育 Association rules Microarray data Associated networks Cerebella development
  • 相关文献

参考文献10

  • 1Pedro CS, Monica C, Andres R, et al. Integrated analysis of gene expression by association rules discovery. BMC Bioinformatics, 2006, 7: 54- 692. 被引量:1
  • 2Tuzhilin A,Adomavicius G.Handling very large numbers of association rules in the analysis of microarray data.In Proceedings of the Eighth ACM SIGKDD International Conference on Data Mining and Knowledge DisoDvery;23—26 July 2002;Edmonton,Canada;2002:396—404. 被引量:1
  • 3Georgii E,Richter L,Ruckert U,et al.Analyzing microarray data using quantitative association rules.Bioinformatics 2005,21(Suppl 2):123—129. 被引量:1
  • 4Creighton C,Hanash S.Mining gene expression databases for association rules.Bioinformatics,2003,19:79-86. 被引量:1
  • 5Becquet C,Blachon S,Jeudy B,et al.Strong-association-rule mining for large-scale gene-expression data analysis:a case study on human SAGE data.Genome Biology,2002,3:12. 被引量:1
  • 6Gao Cong Tung,AKH,Xin Xu,et al.FARMER:Finding Interesting Rule Groups in Microarray Datasets.SIGMOD,2004,1318. 被引量:1
  • 7Takahiro N,Kenji S,Emiko F,et al.A System for Finding Association Rules from Microarray Data and Public Databases.Genome Informatics,2000,11:356—357. 被引量:1
  • 8Jiang XR,Gruenwald L.Mieroarray gene expression data association rules mining based on BSC-tree and FIS—tree.Data & Knowledge Engineering,2005,53(1)3—29. 被引量:1
  • 9Aleksandar I,Carolina R,Elizabeth FR.Distance-Enhanced Association Rules for Gene Expression.BIOKDD03:3rd ACM SIGKDD Workshop on Data Mining in Bioinforrnaties,2003,34-40. 被引量:1
  • 10Berrar D,Dubitzky W.Granzow M,et al.Analysis of Gene Expression and Drug Activity Data by Knowledge based Association Mining.In Proc.of Critical Assessment of Microarray Data Analysis Techniques(CAbiDA’01),2001,25—28. 被引量:1

同被引文献33

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部