期刊文献+

暴雨云团的多尺度识别方法及其在临近预报中的应用 被引量:26

A Multiscale Identifying Algorithm for Heavy Rainfall and Application in Nowcasting
下载PDF
导出
摘要 将一种暴雨云团的多尺度识别方法——层级聚类法,应用于β中尺度对流系统识别及临近预报中。该方法的基本思路是:将笛卡尔坐标下的雷达反射率因子进行聚类,得到比较详细的较小尺度的暴雨云团,然后设定阈值,将云团之间差异小于阈值的进行合并,可以得到较大尺度的云团,逐步放宽合并阈值,可得到更大尺度的云团。选取广州雷达2005年3月的飑线过程和温州2005年9月的台风过程对这种方法的识别结果进行了详细说明,结果表明:该方法能够识别不同系统的β中尺度对流云团,并能识别出其中反射率较强的γ中尺度云团,识别结果合理。采用这种方法识别不同尺度的暴雨云团,有利于跟踪、预报造成中国暴雨主要原因的β中尺度系统,也可兼顾β中尺度系统中的γ中尺度对流单体。根据预报时效的不同,可以选择不同的云团识别尺度。 Heavy rainfall in the Meiyu front and typhoon precipitation are mainly caused by meso-β Mesoscale Convective Systems (MCS). In order to identify the convective systems with different spatial scales, a multi-scale cloud cluster identification algorithm called hierarchical K-Means clustering method is developed in the paper. The algorithm is clustering radar reflectivity data in Cartesian coordinate using K-Means cluster to classify all grids according to a criterion, and the detailed and smaller clusters are identified in the first step. The coarser cloud clusters are formed by merging the clusters with differences less than the threshold. The algorithm and its application in nowcasting are described in detail for the squall line heavy rainfall and the typhoon observed by Guangzhou and Wenzhou radars. The main conclusions are gotten as follows: (1) The clustering algorithms, which are widely used in the field of market analysis and medicinal practice, are successfully used in meso-β-scale and meso-γ-scale convective cells identification, and the results are reasonable for the two cases. The multiscale algorithm is helpful for identifying, tracking and forecasting meso-β-scale and meso-γ-scale systems. (2) The convective systems with different scales can be tracked and extrapolated with different forecast time. The further study to improve the forecast and the evolvement of storm with the algorithm still need to be done.
出处 《大气科学》 CSCD 北大核心 2007年第3期400-409,共10页 Chinese Journal of Atmospheric Sciences
基金 国家自然科学基金资助项目40375008 国家重点基础研究发展规划项目2004CB418305
关键词 多尺度识别 层级聚类 跟踪 预报 multi-scale, hierarchical clustering, tracking, forecasting
  • 相关文献

参考文献19

  • 1Michael D, Gerry W. TITAN: Thunderstorm identification, tracking, analysis, and nowcasting radar-based methodology. J. Atmos. Oceanic Technol., 1993, 1 (6): 785-796 被引量:1
  • 2Johnson J T, Pamela M, Witt A, et al. The storm cell identification and tracking algorithm.. An enhanced WSR-88D algorithm. Wea. Forecasting, 1998, 13:263-276 被引量:1
  • 3French M, Krajewski W, Cuykendall R. Rainfall forecasting in space and time using a neural network. J. Hydrol. , 1992, 137:1-31 被引量:1
  • 4Rinehart R, Garvey E. Three-dimensional storm motion detection by conventional weather radar. Nature, 1978, 273: 287-289 被引量:1
  • 5Tuttle J D, Foote G B. Determination of the boundary layer airflow from a single Doppler radar. J. Atmos. Oceanic Technol. , 1999, 7:218-232 被引量:1
  • 6Browning K A. Conceptual models of precipitation systems. Wea. Forecasting, 1986, 1:23-41. 被引量:1
  • 7Lakshmanan V, Rabin R, DeBrunner V. Mutiscale storm identification and forecast. J. Atmos. Res., 2003, 4: 367-380 被引量:1
  • 8Mueller C, Saxen T, Roberts R, et al. NCAR autc-nowcast system. Wea. Forecasting, 2003, 18:545-561 被引量:1
  • 9Pierce C E, Rbert E, Seed A W, et al. The nowcasting of precipitation during Sydney 2000: An appraisal of the QPF algorithms. Wea. Forecasting, 2004, 19:7-21 被引量:1
  • 10杨传风.强降雹回波系统与地面中尺度系统的分析[J].山东气象,1994,14(4):13-16. 被引量:2

二级参考文献84

共引文献347

同被引文献270

引证文献26

二级引证文献191

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部