期刊文献+

具有时滞的比率型Chemostat模型的稳定性分析 被引量:1

A Stability Analysis of a Ratio-dependent Chemostat Model with Time Delay
下载PDF
导出
摘要 研究了一类具有时滞的、增长函数为比率确定型的微生物连续培养模型,详细讨论了解的存在性、有界性和平衡点的局部稳定性,并利用Lyapunov-LaSalle不变性原理证明了边界平衡点的全局渐近稳定性. Based on some biological meanings,a class of ratio-dependent Chemostat model with time delay is considered. A detailed analysis on existence and boundedness of its solutions and local asymptotic stability of its equilibria is carried out. Using classical Lyapunov-LaSalle invariance principle, it is shown that, while the interior equilibrium is not feasible,the washout equilibrium (i. e. boundary equilibrium) is globally asymptotically stable for any time delay.
出处 《石家庄学院学报》 2007年第3期38-42,共5页 Journal of Shijiazhuang University
关键词 CHEMOSTAT 时滞 稳定性 Lyapunov-LaSalle不变性原理 Chemostat time delay stability lyapunov-LaSalle invariance principle
  • 相关文献

参考文献3

二级参考文献19

  • 1罗桂烈,李德林,朴仲铉.一类多分子反应模型的极限环[J].广西师范大学学报(自然科学版),1994,12(4):28-32. 被引量:2
  • 2HSU S B,HUBELL S P,WALTMAN P.A mathematical theory for single-nutrient competition in continuous culture of micro-organism[J].Siam J Appl Math,1997,32:366-383. 被引量:1
  • 3Crooke P S, Tanner B D.J Engng Sci, 1982, 20: 439-443. 被引量:1
  • 4Crooke P S, Wei C J, Tanner R D.J Chem Eng Commun, 1980, 6: 333-339. 被引量:1
  • 5Ellermeyer S F, Pilyugin S S.J Differential Equations, 2001, 17: 132- 147. 被引量:1
  • 6Hsu S B. J Appl Math, 1978, 34:760 - 763. 被引量:1
  • 7Smith H L, Waltman P. The Theory of the Chemostat. Cambridge University Press, 1994. 被引量:1
  • 8Xiao D, Ruan S.J Bifurcation and Chaos, 2001, 11:2123-2131. 被引量:1
  • 9FengJ, Chen S.J Appl Math, 2000, 13 (4): 85-88. 被引量:1
  • 10Fu G,Ma W,Ruan S,et al.Solitons and Fractals,2004. 被引量:1

共引文献40

同被引文献4

  • 1付桂芳,马万彪.由微分方程所描述的微生物连续培养动力系统(II)[J].微生物学通报,2004,31(6):128-131. 被引量:16
  • 2Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics [ M ]. Boston : Kluwer Academic Publishers, 1992. 被引量:1
  • 3Hirsch S R,Hanisch, Gabriel J P. Differential equation models of some parasitic infections : methods for study of asymptotic behavior[ J ]. Common Pure and Applied Math, 1985,38:733 - 753. 被引量:1
  • 4Wang L, Wolkowicz Gail S K. A delayed chemostat model with general nonmonotone response functions and differential removal rates [ J ]. Journal of Mathematical Analysis and Applications ,2006,321:452 -468. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部