摘要
研究了一类具有时滞的、增长函数为比率确定型的微生物连续培养模型,详细讨论了解的存在性、有界性和平衡点的局部稳定性,并利用Lyapunov-LaSalle不变性原理证明了边界平衡点的全局渐近稳定性.
Based on some biological meanings,a class of ratio-dependent Chemostat model with time delay is considered. A detailed analysis on existence and boundedness of its solutions and local asymptotic stability of its equilibria is carried out. Using classical Lyapunov-LaSalle invariance principle, it is shown that, while the interior equilibrium is not feasible,the washout equilibrium (i. e. boundary equilibrium) is globally asymptotically stable for any time delay.
出处
《石家庄学院学报》
2007年第3期38-42,共5页
Journal of Shijiazhuang University