期刊文献+

适应性观测与集合变换卡尔曼滤波方法介绍 被引量:6

THE ADAPTIVE OBSERVATION AND THE ENSEMBLE TRANSFORM KALMAN FILTER
下载PDF
导出
摘要 给出适应性观测理论和集合变换卡尔曼滤波方法及其研究现状的综述。重点介绍了集合变换卡尔曼滤波方法及其相关的一些问题。在数值预报领域,一种新的途径是利用数值预报系统信息在预报时效内确定出某些区域,如果在这些区域进行补充观测,可以最有效地改进预报技能。这种方法被称为适应性或目标观测,所确定的观测区域称为敏感区,敏感区内增加观测后分析质量将得到改善,对后续的预报技能可产生最大的预期影响。目前适应性观测研究已经成为世界气象组织(WMO)组织的THORPEX计划的一个子计划。集合变换卡尔曼滤波(The Ensemble Transform Kalman Filer,简称ETKF)是一种次优的卡尔曼滤波方案,最早是作为一种适应性观测算法提出的,现在还被用于集合预报初始扰动的生成。ETKF方法不仅可以同化观测资料,而且可以估计出观测对预报误差的影响。它与其它集合卡尔曼滤波方案不同之处在于:ETKF利用集合变换和无量纲化的思想求解与观测有关的误差协方差矩阵,可以快速估计出不同附加观测造成的预报误差协方差的减少量,预报误差减少最多的一组观测所对应的区域就是所寻找的敏感区。 This paper presents the main idea of adaptive observation and ensemble transform Kalman filter and their development. It gives account of the Ensemble Transform Kalman Filter theory and some issues related to this method. Recently strategies were developed that use forecast-system information to identify locations where additional observations would provide maximal improvements in the expected skill of forecast. We refer to these as adaptive observation, or targeted observation, commonly called targeting. Targeting identifies localized areas, referred to as sensitive region, in which the quality of the analysis has the greatest expected influence on the subsequent skill of the forecast. Now the adaptive observation becomes a sub-program of THORPEX. The Ensemble Transform Kalman filter is initially proposed as an adaptive observation method, later it is used in the ensemble forecast. The ETKF is a sub-optimal Kalman filter scheme. Like other Kalman filter, it provides a framework for assimilating observations and also for estimating the effect of observations on the forecast error covariance. It differs from other ensemble Kalman filter in that it uses ensemble transformation and a normalization to rapidly obtain the prediction error covariance matrix associated with a particular deployment of observation resources. This rapidity enables it to quickly assess the ability of a large number of future feasible sequences of observational networks to reduce forecast error variance.
出处 《热带气象学报》 CSCD 北大核心 2007年第2期201-204,共4页 Journal of Tropical Meteorology
基金 国家重点基础研究发展规划项目"我国南方致洪暴雨监测与预测的理论和方法研究"(2004CB418307) 国家自然科学基金"针对典型高影响天气基于集合卡尔曼变换(ETKF)的适应性观测研究"(40675064)共同资助
关键词 适应性观测 THOEPEX计划 集合变换卡尔曼滤波 adaptive observation THORPEX Ensemble Transform Kalman filter
  • 相关文献

参考文献15

  • 1THORPEX中国委员会秘书处.THORPEX国际科学计划中译本[Z].2005:42. 被引量:1
  • 2董佩明,张昕.目标观测设计与伴随敏感性分析[J].气象科技,2004,32(1):1-5. 被引量:8
  • 3PALMER T N,GELARO R,BARKMEIJER J,et al.Singular vectors,metrics,and adaptive observations[J].J Atmos Sci,1998,55(4):633-653. 被引量:1
  • 4THIERRY Bergot,GWENAELLE Hello,ALAIN Joly,et al.Adaptive observation:A feasibility study[J].Mon Wea Rev,1999,127(5):743-765. 被引量:1
  • 5LANGLAND R H,ROHALY G D.Adjoint-based targeting of observations for FASTEX cyclones[R].Preprints,Seventh Conf on Mesoscale Processes,Phoenix,AZ,Amer Meteor Soc,1996:369-371. 被引量:1
  • 6PU Z,KALNAY E.Targeting observations with the quasilinear inverse and adjoint NCEP global models:Performance during FASTEX[J].Quart J Roy Meteor Soc,1999,125(561):3 329-3 338. 被引量:1
  • 7LORENZ E N,EMANUEL K A.Optimal sites for supplementary observation sites:Simulation with a small model[J].J Atmos Sci,1998,55(3):399-414. 被引量:1
  • 8BISHOP C H,TOTH Z.Ensemble transform and adaptive observations[J].J Atmos Sci,1999,56(11):1 748-1 765. 被引量:1
  • 9BISHOP C H,ETHERTON B J,MAJUMDAR S J.Adaptive sampling with the ensemble transform Kalman Filter Ⅰ:Theoretical Aspects[J].Mon Wea Rev,2001,129(3):420-436. 被引量:1
  • 10刘成思,薛纪善.关于集合Kalman滤波的理论和方法的发展[J].热带气象学报,2005,21(6):628-633. 被引量:34

二级参考文献26

  • 1Panel on model-assimilated Data sets (D.R.Johnson,J.T.Bates,G.P.Brasseur,M.Ghil,A.Hollingsworth,R.L.Jenne,K.Miyakoda,E.Rasmusson,E.S.Sarachik,and T.T.Warner).1991:Four-Dimensional Model Assimilation of Data:A Strategy for the Earth System Sciences,National Academy Press,Washington,D.C.,78 pp. 被引量:1
  • 2PANOFSKY H.Objective weather-map analysis[J].J Appl Meteor,1949,6:386-392. 被引量:1
  • 3CRESSMAN.An operational objective analysis system[J].Mon Wea Rev,1959,87(10):367-374. 被引量:1
  • 4GANDIN L.Objective analysis of meteorological fields (Leningrad:Gridromet).English translation(Jerusalem:Israel Problem for Scientific Translation),1965. 被引量:1
  • 5JONES,ROBERT W.On Improving Initial Data for Numerical Forecasts of Hurricane Trajectories by the Steering Method[J].Journal of Applied Meteorology,1964,3(3):277-284. 被引量:1
  • 6NAGLE,ROLAND E,CLARK,et al.Formulation and testing of a program for the objective assembly of meteorological satellite cloud observations[J].Monthly Weather Review,1967,95(4):171-187. 被引量:1
  • 7DALEY.Atmospheric data analysis,Cambridge Univ.Press,1991. 被引量:1
  • 8EPSTEIN E S.Stochastic dynamic prediction[J].Tellus Ser A.1969,21(4):739-759. 被引量:1
  • 9GEIR EVENSEN.Sequential data assimilation with a nonlinear quasi-geostrophic model using Montre Carlo methods to forecast error statistics[J].J Geophys Res,1994,99(10):143-162. 被引量:1
  • 10HMAILL T M.Ensemble-Based Data Assimilation,Workshop on Predictability ECMWF,2002.8.83-105. 被引量:1

共引文献40

同被引文献93

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部