期刊文献+

基于互功率谱的虹膜识别方法 被引量:2

An Iris Recognition Algorithm Based on Cross Power Spectrum
下载PDF
导出
摘要 提出了一种基于互功率谱的虹膜编码方法。采用粗定位与精定位相结合的两步定位法对虹膜定位,能有效地减少搜索计算的盲目性;为了提取虹膜特征,虹膜图像首先被划分为许多子块,然后计算各个子块与2维Gabor小波族之间的互功率谱并进行编码;最后,利用Hamming距离进行模式匹配。实验结果表明,该算法运算速度快,具有较好的识别效果,且编码性能优于Daugman的编码方法。 An encoding algorithm based on cross power spectrum is proposed. A two-step locating approach combining coarse location with fine location is used to locate the iris, which can effectively decrease the blindness of searching computation. To extract the feature of the iris, the iris image is firstly divided into many blocks, and then the cross power spectra between each block and 2D Gabor wavelet family are computed and the blocks are encoded. Finally, the pattern match is executed by using Hamming distance. The results show that this approach has very high computational speed and good recognition rate and is superior to Daugman's method in coding performance.
作者 印勇 徐昶
出处 《中国图象图形学报》 CSCD 北大核心 2007年第5期854-859,共6页 Journal of Image and Graphics
关键词 虹膜识别 虹膜定位 互功率谱 GABOR小波 iris recognition, iris location, cross power spectrum, Gabor wavelets
  • 相关文献

参考文献8

  • 1Daugman J.High confidence visual recognition of persons by a test of statistical independence[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15 (11):1148 ~ 1161. 被引量:1
  • 2Daugman J.Recognizing people by their iris pattern[J].Information Security Technical Report,1998,3 (1):33 ~ 39. 被引量:1
  • 3Wildes Richard P,Asmuth Jane C,Green Gilbert L,et al.A machine-vision system for iris recognition[J].Machine Vision and Applications,1996,9(1):1~8. 被引量:1
  • 4Worthen D M,M itas J A.An evaluation of Iridology[J].Journal of the American Medical Association,1979,242(13):1385 ~1387. 被引量:1
  • 5何家峰,廖曙铮,叶虎年,李柱.虹膜定位[J].中国图象图形学报(A辑),2000,5(3):253-255. 被引量:78
  • 6杨文,于力,王宽全,卢光明.虹膜定位的快速算法[J].计算机工程与应用,2004,40(10):82-84. 被引量:15
  • 7古红英,潘红,吴飞,庄越挺,潘云鹤.虹膜自相似性识别方法研究[J].计算机辅助设计与图形学学报,2004,16(7):973-977. 被引量:7
  • 8黄惠芳,胡广书.虹膜识别算法的研究及实现[J].红外与激光工程,2002,31(5):404-409. 被引量:50

二级参考文献30

  • 11,Flom et al. Iris recognition system. US Patent 4641349. 1987. 被引量:1
  • 22,Daugman J. Biometric personal identification system based on iris analysis. U S, Patent 5291560. 1994. 被引量:1
  • 34,Wildes et al. Automated, Non-invasive iris recognition system and method . US, Patent 5572596. 1996. 被引量:1
  • 4[1]Gabor D. Theory of communication[J]. J Inst Elec Eng, 1946, 93:429-457. 被引量:1
  • 5[2]Daugman J G. Two-dimensional spectral analysis of cortical receptive field profiles[J]. Vision Research, 1980, 20:847-856. 被引量:1
  • 6[3]Daugman J G. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters[J]. Journal of the Optical of America A, 1985, 2(7):1160-1169. 被引量:1
  • 7[4]Daugman J G. High confidence visual recognition of persons by a test of statistical independence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11):1148-1161. 被引量:1
  • 8[5]Daugman J G. Biometric personal identification system based on iris analysis[P]. US Patent 5291560, 1994-03-01. 被引量:1
  • 9[6]Daugman J. Recognizing persons by their iris pattern[J]. Information Security Technical Report, 1998, 13(1):33-39. 被引量:1
  • 10John G Daugman.Biometric personal identification system based on iris analysis.US,patent 5291560. 被引量:1

共引文献135

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部