期刊文献+

Ag-Cu-In-Sn钎料加工工艺的研究 被引量:24

Research on the Processing Technology of Ag-Cu-In-Sn Solder
下载PDF
导出
摘要 Ag-Cu-In-Sn系合金钎料,熔化温度在557~693℃之间,适合于电真空、半导体及微电子器件在真空或保护气氛中无钎剂中温钎焊。对In+Sn含量为20%的Ag-Cu-In-Sn合金,采用强制大变形热挤压开坯的方式,得到了0.1mm以下的薄带钎料。通过金相观察、SEM、XRD及拉伸力学试验对钎料的金相组织、相结构、熔化温度及力学性能进行了分析测试。结果表明:对In+Sn含量为20%的Ag-Cu-In-Sn合金钎料,采用强制大变形热挤压开坯,可得到0.1mm以下的薄带钎料,成材率达到60%以上;Ag-Cu-In-Sn合金主要由具有面心立方结构的富Ag的α相和具有复杂结构富Cu的β相,及少量的Cu41Sn11、Ag3In、CuSn等中间相化合物组成;材料的抗拉强度高达495MPa;材料的断裂机制为微孔聚集型断裂,微观组织中有明显的韧窝存在。 Brazing filler metals of Ag-Cu-In-Sn series, whose melting temperature is between 557-693℃, fit for the braze welding of electron tube, semiconductor and microelectronic device under the condition of vacuum or protective atmosphere. The thin strip under 0. 1mm is obtained through forcible large deformation hot extrusion cogging of Ag-Cu-In-Sn alloy whose In+Sn content is 20%. The metallurgical structure, phase structure, melting temperature and mechanical property of solder are investigated by OM, SEM, XRD and mechanical property test. The results show that the thin strip under 0. 1mm can be obtained through forcible large deformation hot extrusion cogging of Ag-Cu-In- Sn alloy whose In+Sn content is 20%, and the rate of finished product can get to 60% above. The phase composition of Ag-Cu-In-Sn alloy includes Ag rich α phase which has fcc structure, Cu rich β phase which has complicated struc- ture, and little intermediate compound of Cu41 Sn31, Ag3 In, CuSn and so on. The tensile strength of material can get to 495MPa. The fracture mechanism of material is micropore aggregation fracture, and there are visible dimples in microstructure.
出处 《材料导报》 EI CAS CSCD 北大核心 2007年第3期156-158,共3页 Materials Reports
基金 国防科学技术工业委员会资助项目(JPPT-115-121)
关键词 中温钎料 挤压 微观组织 力学性能 intermediate temperature solder, extrusion, microstructure, mechanical property
  • 相关文献

参考文献10

二级参考文献23

  • 1Sungho Jin. Developing lead-free soldexs: a challenge and opportunlty[J]. J Mater, 1993,45(7) : 13. 被引量:1
  • 2Greg Jones. Are you ready fox lead-free assembly?[J ]. Surface Mount Technology,2000,June: 60. 被引量:1
  • 3Zaccaria B. Filler materials: the current situation and future trends with particular reference to lead-free soldering alloys[ J ]. Welding International, 2001,15 ( 7 ) :545. 被引量:1
  • 4Bastecki C. Lead-free assembly of mixed-technology PBCs[J]. Surface Mount Tecnology, 1997,May:52-56. 被引量:1
  • 5Seelig K,Suraski D. The status of lead-free alloys[J].Circuits Assembly, 2000, September :56 - 58. 被引量:1
  • 6Hwang S. Soldering materlals[J ]. Surface Mount Tecnology, 2002, March: 56. 被引量:1
  • 7McCormack M, Jin S. Improved mechanical properties in new Pb-free alloy[ J ]. J Electron Maters, 1994, 23(8) :715-719. 被引量:1
  • 8Anderson I E, Cook B A,Harringa J L. Sn-Ag-Cu solders and solder joints alloy development ,microstructure and properties[J]. J Mater,2002,June:26--29. 被引量:1
  • 9Song H G, Morris J W. The creep properties of lead-free solder joints, microstructure and properties [ J ]. J Mater, 2002, June: 30 - 32. 被引量:1
  • 10Shawkret Ahat, Sheng Mei, Le Luo. Microstructure and shear strength evolution of SnAg/Cu surface mount solder joint during aging[J ]. Electron Mater,2001,30(10) :1317-1322. 被引量:1

共引文献31

同被引文献203

引证文献24

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部