期刊文献+

基于神经网络的道路交通污染物浓度预测 被引量:2

Modeling pollutant concentrations with artificial neural network technique
下载PDF
导出
摘要 利用人工神经网络技术设计了一段式计算路侧道路交通污染物浓度的模型。首先把影响路侧道路交通污染物浓度的因素归结为3大类;然后设计了反映污染物浓度与交通流参数、气象参数和道路空间特征等因素之间数学关系的人工神经元网络结构;最后通过实际观测搜集大量的数据,对神经元网络模型进行训练,得到了精度令人满意的预测模型。 A model was developed to estimate the traffic pollutant concentrations along roadside in one step with artificial neural network technique. First, factors affecting roadside pollutant concentrations were classified into three categories. And then a structure of the artificial neural network was designed to analyze the mathematical relationship between the pollutant concentrations and the factors such as traffic flow attributes, meteorological condition and road spatial configuration. At last great amount of data were collected for training the neural network to obtain a forecasting model which had a high accuracy.
作者 杨忠振 崔丛
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2007年第3期705-708,共4页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金资助项目(50422282)
关键词 环境工程学 污染物浓度 人工神经网络 交通流 气象条件 environmental engineering pollutant concentrations artificial neural network traffic flow meteorological conditions
  • 相关文献

参考文献6

  • 1王炜,徐吉谦.城市交通规划理论及其应用[M].南京:东南大学出版社,2003:226-230. 被引量:2
  • 2Moseholm L.Forecasting carbon monoxide concentration near a sheltered intersection using video traffic surveillance and neural network[J].Transportation Research D,1996,18(1):15-28. 被引量:1
  • 3Gardner M W.Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London[J].Atmosphere Environment,1999,33:709-719. 被引量:1
  • 4Nagendra S M S.Line source emission modeling[J].Atmospheric Environment,2002,36:2083-2098. 被引量:1
  • 5杨忠振.基于神经网络的城市小汽车保有量预测模型[C]//第八届国际交通新技术应用大会论文集.北京:人民交通出版社,2004:631-635. 被引量:1
  • 6Stead D.Relationships between transport emissions and travel patterns in Britain[J].Transport Policy,1999,6:247-248. 被引量:1

共引文献1

同被引文献41

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部