期刊文献+

外汇领域的洗钱侦测系统及关键算法研究 被引量:6

Study on Money-Laundering Detection System and a Key Algorithm
下载PDF
导出
摘要 目前,反洗钱成为世界各政府机构关注的热点领域。本文从技术角度探讨了外汇领域的洗钱侦测系统及其关键算法的实现。首先,描述了我国第一个外汇反洗钱侦测系统的架构;然后提出了一个以语义核心树SCT(Seman-tic Core Tree)为基础的增量概念聚类算法。该算法能解决以下问题:1)能处理海量数据集;2)能处理分类和数值型混合的数据集;3)能够清楚地解释聚类结果,使得结果易于理解。该算法已在反洗钱框架下实现并投入使用。 At present, anti-money laundering has become a hot topic of the entire world. From the point of view of technique, this paper discusses a money-laundering detection system for administration of foreign exchange and one of its key algorithms. It first gives the framework of the system, which is the first anti-money laundering system of our nation. And then it proposes an SCT(Semantic Core Tree)-based incremental conceptual clustering algorithm. The al- gorithm could solve the problems of 1) large volume of data set; 2) mixture of categorical and numerical data; 3) easy understanding of result. The algorithm has been employed in the money laundering detection system .
出处 《计算机科学》 CSCD 北大核心 2007年第3期201-204,共4页 Computer Science
基金 国家自然科学基金(60403027)
关键词 反洗钱系统 数据挖掘 增量概念聚类 语义核心树 分类属性 Anti-money laundering system, Data mining, Incremental conceptual clustering, Semantic core tree, Categorical
  • 相关文献

参考文献8

  • 1Mehammed K.Data Mining Concepts,Models,Methods,and Algorithms[M].BeiJing:Qinghua university Press,2002 被引量:1
  • 2Kaufman L,Rousseeuw P J.Finding Groups in Data-An Introduction on Cluster Analysis// Wiley Series in Probability and Mathematical Statistics[C],New York:John Wiley & Sons Inc,1990.32~71 被引量:1
  • 3Han Hui,Zha Hongyuan.Name Disambiguation in Author Citations Using a K-way Spectral Clustering Method//JCDL' 2005[C].New York:IEEE Press,2005.334~343 被引量:1
  • 4Liu Fang,Lu Zhengding,Lu Songfeng.Mining association rules using clustering[J].Intelligent Data Analysis,2001,5(4):309~326 被引量:1
  • 5Wang W,Yang J,Muntz R.STING:A Statistical Informaition Grid Approach to Spatial Data Mining//Very Large Data Bases(VLDB'97)[C].New York:IEEE Press,1997.186~195 被引量:1
  • 6Mohammed J Z,Markus P.CLICKS:Mining Subspace Clusters in Categorical Data via K-partite Maximal Cliques//ICDE ' 2005[C].New York:IEEE Press,2005.355~356 被引量:1
  • 7Zhang Tian,Ramakrishnan R.BIRCH:A New Data Clustering Algorithm and Its Applications[J].Data Mining and Knowledge Discovery,1997,10(1):141~182 被引量:1
  • 8Chen Hsinchun,Chung Wingyan,Jennifer J,et al.Crime Data Mining:A General Framework and Some Examples[J].IEEE Computer,2004,37(4):50~56 被引量:1

同被引文献60

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部