摘要
研究了服务台可修的M/M(M/M)/1排队系统.在服务台修复非新时,利用几何过程和向量Markov过程,并借助于经典排队系统M/M/1的忙期。
A M/M(M/M)/1 queueing system with repairable service station is studied. Assuming that the service station after repair can not be “as good as new”, by using geometric process, vector Markov process and the busy period of the classical queueing system M/M/1, some queuing indices of the system and some reliability indices of the service station are derived.
出处
《东南大学学报(自然科学版)》
EI
CAS
CSCD
1997年第1期113-118,共6页
Journal of Southeast University:Natural Science Edition
基金
国家自然科学基金
江苏省自然科学基金
关键词
几何过程
可修服务台
排队系统
马氏过程
vector Markov process
L transform
LS transform
absorbing state / geometric process
repairable service station