期刊文献+

基于稀疏分解的微弱信号检测方法 被引量:10

A Weak Signal Detection Method Based on Sparse Decomposition
下载PDF
导出
摘要 微弱信号的检测在通信、雷达、声纳等领域有着重要的意义,一直是信号处理的难点。本文将信号稀疏分解思想应用于信号检测,提出一种算法。算法中信号稀疏分解采用Matching Pursuit(MP)算法实现,原子采用正弦波模型,通过对正弦波模型伸缩和平移形成过完备原子库。由MP分解结果,可检测出淹没在强噪声环境中的微弱正弦信号的幅度、频率和初相位参数,从而恢复出待检测的微弱正弦信号。所提出方法在-40 dB极低信噪比环境下可以同时检测多个正弦信号。计算机仿真结果证实了算法的有效性。 To detect weak signals is difficult in signal processing and is very important in many areas such as communication, Radar and Sonar. In this paper, a new algorithm is proposed by introducing the idea of sparse decomposition into signal detection. The sparse decomposition is implemented by matching pursuit (MP) in this algorithm. The model of atoms is the sinusoidal function, and the redundancy dictionary is built up by stretching, compression and time shift of sinusoidal functions. The amplitude, frequency and initial phase parameters of sinusoidal signals blurred by strong noise can be estimated according to the parameters of the MP decomposed atoms, and the expected weak sinusoidal signal can be then reconstructed. The new method can detect more than one sinusoidal signal simultaneously at very low SNR of -40dB. Computer simulations confirm its validity.
出处 《铁道学报》 EI CAS CSCD 北大核心 2007年第2期114-117,共4页 Journal of the China Railway Society
基金 国家自然科学基金项目(60602043) 四川省重点科技计划项目(04GG021-020-5 03GG006-005-2) 教育部留学回国人员科研启动基金([2004]527号)
关键词 信号处理 信号检测 稀疏分解 MATCHING PURSUIT signal processing signal detection sparse decomposition matching pursuit
  • 相关文献

参考文献9

  • 1Tuteur F B.Wavelet Transforms in Signal Detection[C]//Proc.of IEEE ICASSP.New York,USA:1988.1435-1438. 被引量:1
  • 2Wang G,Chen D,Lin J,et al.The Application of Chaotic Oscillators to Weak Signal Detection[J].IEEE Trans.On Industrial Electronics,1999,45(2):440-444. 被引量:1
  • 3Mallat S,Zhang Z.Matching Pursuits with Time-frequency Dictionaries[J].IEEE Trans.Signal Processing,1993,41:3397-3415. 被引量:1
  • 4邹红星,周小波,李衍达.时频分析:回溯与前瞻[J].电子学报,2000,28(9):78-84. 被引量:135
  • 5傅霆,尧德中.稀疏分解的加权迭代方法及其初步应用[J].电子学报,2004,32(4):567-570. 被引量:27
  • 6Kisilev P,Zibulevsky M.Blind Source Separation Using Multinode Sparse Representation[C]//Proc.of the Inter.Conf.on Image Processing.2001,(3).202-205. 被引量:1
  • 7Coifman R,Wickerhauser M.Entropy-based Algorithms for Best Basis Selection[J].IEEE Trans.Information Theory,1992,38:1713-1716. 被引量:1
  • 8Chen S,Donoho D,Sauners M.Atom Decomposition by Basis Pursuit[J].SIAM Journal on Scientific Computing,1999,20:33-61. 被引量:1
  • 9Daubechies I.Time-frequency Localization Operator:A Geometric Phase Space Approach[J].IEEE Trans.Information Theory,1988,34:605-612. 被引量:1

二级参考文献12

  • 1殷勤业,倪志芳,钱世锷,陈大庞.自适应旋转投影分解法[J].电子学报,1997,25(4):52-58. 被引量:40
  • 2B A Olshausen,D J Field.Sparse coding with an overcomplete basis set:a strategy employed by V1[J]? Vision Research,1997,37:3311-3325. 被引量:1
  • 3M Lewicki,T Sejnowksi.Learning overcomplete representations[J].Neural.Computation,2000,12:337-365. 被引量:1
  • 4Chen S S,D L Donoho,M A Saunders.Atomic decomposition by basis pursuit[J].SIAM J.Sci Comp,1999,20(1):33-61. 被引量:1
  • 5Michael Zibulevsky,Barak A Pearlmutter.Blind source separation by sparse decomposition in a signal dictionary[J].Neural Computation,2001,13:863-882. 被引量:1
  • 6Michael Zibulevsky,Yehoshua Y Zeevi.Extraction of a Source from Multichannel Data Using Sparse Decomposition[R].Available online at:HYPERLINK ''http://ie.technion.ac.il/-mcib'' http://ie.technion.ac.il/-mcib 被引量:1
  • 7Huo Xiao-ming.Sparse Image Representation via Combined Transforms[D].PH.D Paper of Stanford univ.1999 Available online at: HYPERLINK ''http://www.isye.gatech.edu/-xiaoming'' http://www.isye.gatech.edu/-xiaoming. 被引量:1
  • 8Stephance Mallat.Sihgularity dection and processing with wavelets[J].IEEE trans on information theory,1992,38:617-643. 被引量:1
  • 9R R Gharieb,Andrzej Cichocki,et al.Noise reduction in brain evoked potentials based on third-order correlations[J].IEEE trans on Biomedical Engineering,2001,48:501-512. 被引量:1
  • 10Donoho D L.Sparse Components of Images and Optimal Atomic Decompositions[R].1998.Available online at: HYPERLINK ''http://www-stat.stanford'' http://www-stat.stanford.edu/-donoho/Reports/ 被引量:1

共引文献152

同被引文献90

引证文献10

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部