期刊文献+

基于改进的自组织特征网络聚类分析 被引量:1

Clustering analysis based on improved SOFM network
下载PDF
导出
摘要 针对传统Kohonen自组织特征映射(SOFM)神经网络模型结构需要预选指定的限制,特别在大的映射网络中寻找最佳匹配结点是很耗时的问题,我们采用一种新的动态增长树型自组织特征神经网络(GTS-SOFM),给出了实现聚类的具体算法,并且使用聚类密度来衡量聚类效果.对样本进行随机抽样,实验结果证实了算法的有效性. One of the drawbacks of the SOFM is that the user must select the map size in advance, especially the time-consuming search for the best matching unit in large maps, A new Growing Tree-Structured Self-Organizing Maps (GTS-SOFM) is proposed and the specific algorithm to implement clustering is given, by using cluster density to Measure Cluster Quality. With the help of random sample technique, the experiment proves the efficiency of algorithm.
出处 《安徽工程科技学院学报(自然科学版)》 CAS 2007年第1期67-70,共4页 Journal of Anhui University of Technology and Science
关键词 最佳匹配结点 增长树型白组织神经网络 聚类密度 best matching unit growing tree-structure SOFM cluster density
  • 相关文献

参考文献6

  • 1Kohonen T.Self-Organization Maps[M].Berlin:Springer-Verlag,1995. 被引量:1
  • 2D Alahakoon.Dynamic self-organizing maps with controlled growing for knowledge discovery[J].IEEE Trans.On Neural Networks,2000,NN-11(3):601-614. 被引量:1
  • 3Pakkanen,J.The Evolving Tree,a new kind of self-organizing neural network[C]//Proceedings of the Workshop on Self-Organizing Maps'03,Kitakyushu,Japan,2003:311-316. 被引量:1
  • 4Herbert,J.A new approach to competitive learning in self-organizing maps[D].Regina:University of Regina,2006. 被引量:1
  • 5Blackmore,J,Miikkulainen,R.Incremental grid growing:encoding high-dimensional structure into a two-dimensional feature map[C]//Proceedings of the IEEE Interational Conference on Neural Network,1993:450-455. 被引量:1
  • 6王莉,王正欧.TGSOM:一种用于数据聚类的动态自组织映射神经网络[J].电子与信息学报,2003,25(3):313-319. 被引量:28

二级参考文献4

  • 1[1]M.S. Chen, J. Han, P. S. Yu, Data niining, An overview fiom a database perspective, IEEE Trans. on Knowledge & Data Engineering, 1996, 8(6), 866-883 . 被引量:1
  • 2[2]T. Kohonen, Self-Organization and Associate Memory, Berlin, Springer-Verlag, 1984, Chapter 5. 被引量:1
  • 3[3]D. Alahakoon, S. K. Halgamuge, Dynamic self-organizing maps with controlled growth for knowledge discovery, IEEE Trans. on Neural Networks, 2000, NN-11(3), 601-614. 被引量:1
  • 4[4]D. Choi, S. Park, Self-creating and organizing neural networks, IEEE Trans. on Neural Networks,1994, NN-5(4), 561-575. 被引量:1

共引文献27

同被引文献4

  • 1YU Z W, HAUSAN Wong. Genetic-based K-means algo- rithm for selection of feature variables [ A ]. Proceedings of the 18th International Conference on Pattern Recognition (ICPR06) [ C ]. 2006. 被引量:1
  • 2GOLDIN D, MARDALES R, NAGY G. In search of meaning for time series subsequence clustering: matching algorithms based on a new distance measure [ A ]. Proceedings of the 15th ACM International Conference on Information and Knowledge Management[ C ]. 2006. 被引量:1
  • 3周欢,李广明,张高煜.SOM+K-means两阶段聚类算法及其应用[J].现代电子技术,2010,33(16):113-116. 被引量:13
  • 4杨薇,罗怀容,许秀峰,杨骏.抗抑郁药物基因组学研究进展[J].中国神经精神疾病杂志,2010,36(9):573-576. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部