摘要
利用数学归纳法及相关引理将文献[1]中通过考察U0-(x0)和U0+(x0)内f′(x)或f(x)的符号来判断(x0,f(x0))为曲线y=f(x)的拐点的充分条件推广到通过考察U0-(x0)和U0+(x0)内f(n)(x)的符号来判断(x0,f(x0))是否为曲线y=f(x)的拐点与极值点,并在此基础上得到若y=f(x)在点x=x0的某去心邻域内具有(n-1)阶导数,在x=x0具有n阶导数(n≥2),如果f′(x0)=f″(x0)=…=f(n-1)(x0)=0,而f(n)(x0)≠0,则当n为奇数时,(x0,f(x0))是拐点不是极值点;当n为偶数时,(x0,f(x0))是极值点不是拐点,且当f(n)(x0)>0时为极小值点,当f(n)(x0)<0时为极大值点.最后将本文所得三定理举例加以应用.
Firstly, mathematical inductive method and other lemma are adopted to judge whether ( x0 ,f(x0 ) ) is or is not the point of inflection and the point of extreme value by examining the sign of f^(n) (x) in U_^0 (x0) and U_^0 ( x0 ). It is then concluded that if y =f( x ) has f^( n-1 ) ( x ) in U^0 ( x0 ;δ) and f^n) ( x0 ) ( n≥ 2 ), f ( x0 ) =f' ( x0 ) = …=f^(n-1) (x0) ,f^(n) (x0) ≠0, (x0, f(x0) ) is the point of inflection and is not the point of extreme value when n is odd number, (x0,f ^(n)(x0 ) ) is not the point of inflection and is the point of extreme value when n is even num- ber, furthermore (x0, f(x0) ) is extreme minimum value when f^(n) (x0) 〉0 and (x0,f(x0) ) is extreme maximum value when f^( n) (x0 ) 〈 0. Finally, the three theorems are applied by giving examples.
出处
《昆明理工大学学报(理工版)》
2007年第2期121-124,共4页
Journal of Kunming University of Science and Technology(Natural Science Edition)
基金
国家自然科学基金资助项目(项目编号:10501021)
安徽省高等学校自然科学研究资助项目(项目编号:2005kj214)
关键词
拐点
极值点
导数
point of inflection
point of extreme value
derivative