期刊文献+

Estimation of Attractive Regions of Nonlinear MPC Controller-A Feasible Solution-based Method 被引量:1

Estimation of Attractive Regions of Nonlinear MPC Controller-A Feasible Solution-based Method
下载PDF
导出
摘要 A new model predictive control(MPC) algorithm for nonlinear systems is presented,its stabilizing property is proved,and its attractive regions are estimated.The presented method is based on the feasible solution,which makes the attractive regions much larger than those of the normal MPC controller that is based on the optimal solution. A new model predictive control (MPC) algorithm for nonlinear systems is presented, its stabilizing pro laerty is 40roved, and its attractive regions are, estimated. The presented method is based on the feasible solution, which makes the attractive regions much larger than those of the normal MPC controller that is based on the optimal solution.
出处 《信息与控制》 CSCD 北大核心 2007年第2期192-198,共7页 Information and Control
关键词 非线性控制 NMPC 吸引区域 可行性 MPC控制 nonlinear model predictive control (NMPC) attractive region feasibility
  • 相关文献

参考文献11

  • 1Keerthi S S,Gilbert E G.Optimal infinite-horizon feedback laws for a general class of constrained discrete time systems:Stability and moving-horizon approximations[J].Journal of Optimization Theory and Applications,1988,57(3):265 ~ 293. 被引量:1
  • 2Michalska H,Mayne D Q.Robust receding horizon control of constrained nonlinear systems[J].IEEE Transactions on Automatic Control,1993,38(11):1623 ~ 1633. 被引量:1
  • 3Scokaert P O M,Mayne D Q,Rawlings J B.Suboptimal model predictive control (Feasibility implies stability)[J].IEEE Transactions on Automatic Control,1999,44(3):648 ~ 654. 被引量:1
  • 4Guo Z,Qian L J.Satisfactory control,estimation and model reduction[A].Proceedings of the 3rd World Congress on Intelligent Control and Automation[C].Piscataway,NJ,USA:IEEE,2000.91~94. 被引量:1
  • 5Kothare M V,Balakrishnan V,Morari M.Robust constrained model predictive control using linear matrix inequalities[J].Automatica,1996,32(10):1361 ~ 1379. 被引量:1
  • 6Mayne D Q,Michalska H.Receding horizon control of nonlinear systems[J].IEEE Transactions on Automatic Control,1990,35(7):814 ~824. 被引量:1
  • 7Chisci L,Lombardi A,Mosca E.Dual receding horizon control of constrained discrete time systems[J].European Journal of Control,1996,2(4):278 ~285. 被引量:1
  • 8Liu R W.Convergent systems[J].IEEE Transactions on Automatic Control,1968,AC-13(4):384~391. 被引量:1
  • 9Boyd S,Ghaogui L,El Feron E,et al.Linear Matrix Inequalities in System and Control Theory[M].Philadelphia,PA,USA:SIAM,1996. 被引量:1
  • 10Packard A,Doyle J.The complex structured singular value[J].Automatica,1993,29(1):71 ~ 109. 被引量:1

同被引文献16

  • 1Qin S J, Badgwell T A. An overview of industrial model predictive control technology [C]//Proceedings of 5th International Conference on Chemical Process Control, CACHE, AIChE. New York: AIChE, 1997: 232-256. 被引量:1
  • 2Chen W H, Balance D J, O'Reilly J. Model predictive control of nonlinear systems: computational burden and stability[J]. IEE Proceeding of Control Theory Application, 2000, 147(4):387-394. 被引量:1
  • 3Cannon/VL Efficient nonlinear model predictive control algorithms[J]. Annual Reviews in Control, 2004, 28 (2) : 229-237. 被引量:1
  • 4Magni L, de Nicolao G, Magnani L, et al. A stabilizing model-based predictive control algorithm for nonlinear systems[J]. Automatica, 2001, 37 (9):1351-1362. 被引量:1
  • 5Mayne D Q, Michalska H. Receding horizon control of nonlinear systems[J ]. IEEE Transactions on Automatic Control, 1990, 35(7): 814-824. 被引量:1
  • 6Michalska H, Mayne D Q Robust receding horizon control of constrained nonlinear systems [J]. IEEE Transactions on Automatic Control, 1993, 38 (11): 1623-1633. 被引量:1
  • 7Kothare M V, Balakrishnan V, Morari M Robust constrained model predictive control using linear matrix inequalities [J]. Automatica, 1996, 32(10): 1361- 1379. 被引量:1
  • 8Banerjee A, Arkun Y, Pearson R K, et al. H∞ control of nonlinear processes using multiple linear models[C]//Proceedings of 3rd European Control Conference on Multiple Model Approaches to Modeling and Control. London: Taylor and Francis, 1997:2671- 2676. 被引量:1
  • 9Narendra K S, Balakrishnan J, Ciliz M K. Adaptation and learning using multiple models, switching and turning[J]. IEEE Control System Magazine, 1995, 15 (3) : 37-51. 被引量:1
  • 10Li N, Li S Y, Xi Y G. Multi-model predictive control based on the Takagi-Sugeno fuzzy models: a case study[J]. Information Science, 2004, 165(3-4): 247-263. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部