期刊文献+

竞争风险下纵列数据的随机效应建模和估计 被引量:3

Construct and Estimate the Random Model about the Longtitudinal Data Under Competing Risks
下载PDF
导出
摘要 为研究包含右删失的纵列生存数据,对每种风险建立一个COX比例危险模型,采用每种风险的危险率上都乘一个随机效应因子的方法,体现不同风险的危险率之间的联系,虽然这样做从通常的随机效应的边际似然估计方法来看是大大增加了难度,但更加符合实际。在模型估计上,采用等级似然估计方法,从而避免了求后验分布的积分运算,简化了估计过程。对竞争风险下比例危险的随机效应模型的等级似然函数,给出了推导和估计步骤。 In order to study the multivariate survival data competing hazard to reveal the relation of different causes, , a unique random variable is applied to multiply each and COX Proportional Hazard model is assumed for each competing hazard. This looks more difficult of estimating intensively in traditional view, but it is more coincident with the actual facts. Using hierarchical likelihood approach, the multidimensional integral is avoided, and the hi- erarchical likelihood function and the process of estimating model are derived.
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期7-10,共4页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(70273060) 国家社会科学基金资助项目(06BJY033)
关键词 竞争风险 随机效应 比例危险 等级似然 右删失 competing risks random effect proportional hazard hierarchical likelihood right censored
  • 相关文献

参考文献10

  • 1LANCASTER Tony.Econometric Methods for the Duration of Unemployment[J].Econometrica,1979,47:939-956. 被引量:1
  • 2HECKMAN Singer.A Mehhod of Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data[J].Econometrica,1984,52:271-320. 被引量:1
  • 3HUH K,POSTER A K,SICKLES R C.Maximum Penalized Likelihood Estimation of Mixed Proportional Hazard Models[J].Communications in Statistics-Theory and Methods 1998,27:2143-2164. 被引量:1
  • 4LEE Young-jo,NELDER J A.Hierarchical Generalized Linear Models[J].J R Statist Soc B,1996,58(4):619-678. 被引量:1
  • 5IL Do-ha,LEE Young-jo,SONG Jae-kee.Hierarchical Likelihood Approach for Frailty Models[J].Biometrika,2001,88:233-243. 被引量:1
  • 6IL Do-ha,LEE Young-jo,SONG Jae-kee.Hierarchical-likelihood Approach for Mixed Linear Models with Censored Data[J].Life Time Analysis,2002:163-176. 被引量:1
  • 7IL Do-ha,LEE Young-jo.Multilevel Mixed Linear Models for Survival Data[J].Life Time Analysis,2005,11:131-142. 被引量:1
  • 8BRESLOW N E.Covariance Analysis of Censored Survival Data[J].Biometrics,1974,30:89-99. 被引量:1
  • 9CROWDER M J.Classical Competing Risks[M].London:Chapman & Hall/CRC,2001. 被引量:1
  • 10IL Do-ha,LEE Young-jo.Miscellanea Comparison of Hierarchical Likelihood Versus Orthodox Best Linear Unbiased Predictor Approaches for Frailty Models[J].Biometrika,2005:717-723. 被引量:1

同被引文献48

  • 1COX D R. Regression models in life tables (with discus- sion) [J]. J Roy Statist Soc: Ser B, 1972, 34:187 - 220. 被引量:1
  • 2PICKLES R, CROUCHLEY. A comparison of frailty models for multivariate survival data [ J ]. Statistics in Medicine, 1995, 14(13): 1447-1461. 被引量:1
  • 3HOUGAARD P. Frailty models for survival data [ J ]. Li- fetime data analysis, 1995, 1 (3) : 255 -273. 被引量:1
  • 4MCLACHLAN G, PEEL D. Mixtures of factor analyzers [ J]. Finite Mixture Models, 2000:238 - 256. 被引量:1
  • 5JAMSHIDIAN M, JENNRICH R I. Acceleration of the EM algorithm by using quasi-Newton methods [J]. Jour- nal of the Royal Statistical Society : Series B ( Statistical Methodology), 1997, 59 (3) : 569 - 587. 被引量:1
  • 6LEE Y, NELDER J A. Hierarchical generalized linear models [ J ]. Journal of the Royal Statistical Society:Se- ries B ( Methodological), 1996 : 619 - 678. 被引量:1
  • 7HA IL DO, LEE Y, SONG J K. Hierarchical likelihood approach for frailty models [ J ]. Biometrika, 2001, 88 (1): 233-233. 被引量:1
  • 8HA IL DO, LEE Y, SONG J K. Hierarchical-likelihood approach for mixed linear models with censored data [ J ]. Lifetime data analysis, 2002, 8(2) : 163 -176. 被引量:1
  • 9HA IL DO, LEE Y. Multilevel mixed linear models for survival data [ J ]. Lifetime Data Analysis, 2005, 11 (1): 131-142. 被引量:1
  • 10LEE Y, JANG M, LEE W. Prediction interval for dis- ease mapping using hierarchical likelihood [ J ]. Compu- tational Statistics, 2011, 26(1 ): 159- 179. 被引量:1

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部