期刊文献+

基于小波变换和矢量量化的人脸图像压缩 被引量:2

Facial image compression based on wavelet transform and vector quantization
下载PDF
导出
摘要 提出一种新的在小波域内进行矢量量化的算法.该算法在对图像进行多级小波变换后,构造三个方向的跨频带矢量,同时采用分类矢量量化,非线性插补矢量量化和基于人眼视觉特性的加权矢量量化,提高了图像的编码效率和重构质量.仿真结果表明,该算法实现简单,在较低的编码率下,可达到较好的压缩效果. A new vector quantization menthod in the wavelet transform domain is proposed. First, wavelet transform decomposes the original image, then the coefficients of the three directions are used to construct the band-cross vector,and then the vectors are classified. In addition,new vector quantization technologies are used in this algorithm. Simulation shows that this method can be realized easily and compress the wavelet image efficiently under lower coding rate.
作者 黄晴
机构地区 西北大学数学系
出处 《纯粹数学与应用数学》 CSCD 北大核心 2007年第1期104-107,111,共5页 Pure and Applied Mathematics
关键词 人脸 小波变换 跨频带矢量构造 矢量量化 human face, wavelet transform, band-cross vector construction, vector quantization
  • 相关文献

参考文献12

  • 1Mallat S.Multifrequency channel decomposition of images and wavelet models[J].IEEE Trans.on ASSP,1989,37(12):2091-2110. 被引量:1
  • 2Atonini M,Barlaud M,Mathieu P.Image coding using wavelet transform[J].IEEE Trans.on Image Processing,1992,1(2):205-220. 被引量:1
  • 3孙延奎编著..小波分析及其应用[M].北京:机械工业出版社,2005:285.
  • 4Olanda R,Perez M,Benavent X.Tiling of the wavelet lowpass subbands for progressive browing of images[J].IEEE Signal Processing Letters,2006,13 (11):680-683. 被引量:1
  • 5Zou D K,Shi Y Q,Ni Z C,et al.A semi-fragile lossless digital watermarking scheme based on integer wavelet transform[J].IEEE Trans.on Circuits and Systems for Video Technology,2006,16 (10):1294-1300. 被引量:1
  • 6Ellinas J N,Sangriotis M S.Morphogical wavelet-based stereo image coders[J].Journal of Visual Communication and Image Representation,2006,17(4):686-700. 被引量:1
  • 7Shapiro J M.Embedded image coding using zerotrees of wavelet coefficient[J].IEEE Trans.on Signal Processing,1993,41 (12):3445-3462. 被引量:1
  • 8Said A,Pearlman W.A new fast and efficient image code based on set partitioning in hierarchical trees[J].IEEE Trans.on Circuits and System Video Technology,1996,6(3):243-249. 被引量:1
  • 9孙圣和,陆哲明著..矢量量化技术及应用[M].北京:科学出版社,2002:472.
  • 10Desarte P,Macq B,Slock D.Signal-adapted multiresolution transform for image coding[J].IEEE Trans.on Information Theory,1992,38 (2):897-904. 被引量:1

同被引文献18

  • 1王岩,苏健民,于慧伶,赵伟.小波分析在语音识别系统中的研究与应用[J].林业劳动安全,2007,20(1):38-41. 被引量:4
  • 2任朝晖,马辉,王德明,宋乃慧.小波分析在转子裂纹故障中的应用[J].东北大学学报(自然科学版),2007,28(4):545-548. 被引量:6
  • 3Akay M, Mello C. Wavelets for biomedical signal processing[J]. IEEE Engi. Medi. Bio. Soc., 1997,6: 2688-2691. 被引量:1
  • 4Davis T J. Fast decomposition of digital curves into polygons using the haar transform[Jt. IEEE Trans. Pattern Anal. Mach. Intelli., 1999,21:786-790. 被引量:1
  • 5Ohkita M, Kobayashi Y. An application of rationalized Haar functions to solution of linear differential equations[J]. IEEE Transactions on Circuits and Systtems, 1986,9:853-862. 被引量:1
  • 6Ohkita M, Kobayashi Y. An application of rationalized Haar functions to solution of linear partial differential equations[J]. Math. Comput. Simu., 1988,5:419-428. 被引量:1
  • 7Rabbani M, Maleknejad K, Aghazadeh N, et al. Computational projection methods for solving Fredholm integral equation[J]. Appl. Math. Comput., 2007,191:140-143. 被引量:1
  • 8Reihani M, Abadi Z. Rationalized Haar functions method for solving Fredholm and Volterra integral equations[J]. J. Comput. Appl. Math., 2007,200:12-20. 被引量:1
  • 9Ordokhani Y, Razzaghi M. Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via a collocation method and rationalized Haar functions[J]. Appl. Math. Lett., 2008,21:4-9. 被引量:1
  • 10Razzaghi M, Ordokhani Y. Solution of differential equations via rationalized Haar functions[J]. Math. Compu. Simul., 2001,56:235-246. 被引量:1

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部