期刊文献+

汇率预测:一个新的非参数支持向量回归方法 被引量:14

Forecasting Exchange Rates:A New Nonparametric Support Vector Regression
原文传递
导出
摘要 本文利用一个新的非参数支持向量回归(SVR)方法来预测基于非线性ARI模型的汇率时序变量,并且与最大似然法(MLE)和人工神经网络(ANN)的预测结果进行比较。从理论上讲,MLE和ANN方法仅侧重于样本内拟合,而SVR方法则同时考虑了拟合和预测,因此,其预测能力在现有方法中是最强大的。本文选择中国、韩国、印度和瑞士四种货币的日汇率来进行预测检验,实证结果支持SVR方法具有最强的预测能力。 This paper applies Support Vector Regression (SVR) to forecast ARI model of the daily exchange rates of four currencies (Swiss Francs, Indian Rupees, South Korean Won and China Renminbi) . The forecasting abilities of SVR are compared with MLE and ANN approaches. Theorically, MLE and ANN only focus on fit within-sample, but SVR considers both fit and forecast out-of-sample. Therefore SVR has the strongest forecast ability among all methods. Empirical findings are in favor of SVR.
作者 陈诗一
出处 《数量经济技术经济研究》 CSSCI 北大核心 2007年第5期142-150,共9页 Journal of Quantitative & Technological Economics
关键词 支持向量回归 ARI模型 汇率预测 预测精度 嵌套检验 Support Vector Regressionl ARI Model Exchange Rate Forecas-ting Forecasting Accuracy Encompassing Test
  • 相关文献

参考文献28

  • 1Adya M. and Collopy F. , 1998. Howeffective are neural networks at forecasting and prediction? A review and evaluation, [J]. Journal of Forecasting, 17: 481-495. 被引量:1
  • 2Ashok K. N. and Mitra A. 2002. Forecasting daily foreign exchange rates using genetically optimized neural networks [J], Journal of Forecasting. 21: 501-511. 被引量:1
  • 3Cao L and Tay F. 2001. Financial forecasting using support vector machines [J], Neural Computation and Application 10: 184-192. 被引量:1
  • 4Chang MW, Lin CJ and Weng RC. 2002, Analysis of switching dynamics with competing support vector machines [J], Proceedings of IJCNN, May. 被引量:1
  • 5Chen Shiyi, W.K. H? rdle, R.A. Moro, 2006, Estimationof Default probabilities with Support Vector Machines [J], A discussion paper published by the SFB 649, Humboldt University with the number 2006-077 (http: //sfb649. wiwi. hu- berlin.de/fedc/discussionPapers_de. php) . 被引量:1
  • 6Clark TE and McCracken MW. 2001, Tests of equal forecast accuracy and encompassing for nested models [J], Journal of Econometrics 105: 85-110. 被引量:1
  • 7Ericsson NR. 1992, Parameter constancy, mean square forecast errors, and measuring forecastperforrnance: an exposition, extensions, and illustration [J], Journal of Policy Modelling 4: 465-495. 被引量:1
  • 8Haefke C. and Helmenstein C. 1996, Forecasting Austrian IPOs: An application of linear and neural network error -correction models [J], Journal of Forecasting 15: 237-251. 被引量:1
  • 9Harvey DI, Leybourne SJ and Newbold P. 1998, Tests for forecast encompassing [J] , Journal of Business and Economic Statistics 16: 254-259. 被引量:1
  • 10H · rdle W. K. , R. A. Moro and D. Schafer, 2005, Predicting Bankruptcy with Support Vector Machines, Statistical Tools for Finance and Insurance [M], Springer Verlag, Berlin. 被引量:1

二级参考文献5

  • 1VladmirNVapnik 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:1
  • 2GUNN S. Support Vector Machines for Classification and Regression[R]. Technical Report, 1998. 被引量:1
  • 3CRISTIANINI N, SHAWE TAYLOR J. An Introduction to Support Vector Machines[M]. Cambridge: Cambridge Univ. Press, 2000. 被引量:1
  • 4LEE J H,LIN C J.Automatic Model Selection for Support Vector Machines[R]. Technical Report,2000. 被引量:1
  • 5刘江华,程君实,陈佳品.支持向量机训练算法综述[J].信息与控制,2002,31(1):45-50. 被引量:97

共引文献36

同被引文献252

引证文献14

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部