期刊文献+

基于人工神经网络的涂阴肺结核诊断模型研究

Establishment of diagnostic model of smear negative pulmonary tuberculosis based on artificial neural network.
下载PDF
导出
摘要 目的应用人工神经网络系统,建立基于人工神经网络的涂阴肺结核诊断模型并研究其诊断性能。方法将全部研究对象随机分为训练样本和测试样本,利用训练样本筛选出对诊断涂阴肺结核有意义的单项参数指标,构建人工神经网络诊断模型,用ROC曲线下面积、灵敏度及特异度评价其诊断性能。结果得到人工神经网络模型结构为(29-9-1)-BP型。模型在训练样本和测试样本ROC曲线下面积分别为0.984±0.004和0.955±0.018,诊断的正确率、灵敏度及特异度分别为93.30%和91.07%,90.78%和90.91%,95.45%和91.30%。结论(29-9-1)-BP型网络模型可作为涂阴肺结核的诊断工具,有良好的诊断性能,值得进一步探讨。 Objective To establish a model based on artificial neural network for diagnosis of smear negative pulmonary tuberculosis and evaluating its performance. Methods All original data was randomly divided into training sample and testing sample. training samples were used to screen out significant single meter and develop the diagnostic model of smear negative pulmonary tuberculosis based on artificial neural network. The area under the receiver operator characteristic curve, sensitivity and specificity were used to evaluate the model's performance in both training and testing samples. Results The structure of artificial neural network is (29 - 9 - 1) - BP. When the model was applied to the training sample and the testing sample, the area under the receiver operator characteristic curve, accuracy, sensitivity and specificity were 0.984 ±0.004 and 0.955 ± 0.018, 91.07% and 93.10%, 90.91% and 88.89% ,91.30% and 100% respectively. Condusion Artificial neural network model is capable of diagnosing smear negative pulmonary tubereulosis and it can be used as a tool in routine diagnostic practice.
出处 《中国热带医学》 CAS 2007年第5期661-663,678,共4页 China Tropical Medicine
基金 山东省卫生厅立项课题(2005HW012)
关键词 涂阴 结核 人工神经网络 诊断 Smear negative Tuberculosis Lung Artificial neural network Diagnosis
  • 相关文献

参考文献11

二级参考文献50

  • 1张晓平,潘杉,关丽萍.血清肿瘤标志物联合检测在肺癌诊断中的应用[J].中国实用内科杂志,2002,22(2):98-99. 被引量:6
  • 2周丽蓉,罗永艾.结核病血清学诊断的新进展[J].中国实用内科杂志,2005,25(3):269-271. 被引量:21
  • 3黄承国,祝秀芳,侯栋.213例胸部X线片分析[J].临床肺科杂志,2005,10(3):389-389. 被引量:2
  • 4彭丽,罗永艾.结核病的实验室快速诊断[J].新医学,2005,36(6):359-361. 被引量:28
  • 5Chou YS, Lure YM. Hybrid lung nodule detection(HLND)system. Cancer Lett, 1994, 77(2-3): 119-126. 被引量:1
  • 6Wu YC, Doi K, Giger ML, et al. Reduction of false positives in computerized detection of lung nodules in chest radiographs using artificial neural networks, discriminant analysis, and a rule-based scheme. J Digit Imaging, 1994, 7(4): 196-207. 被引量:1
  • 7Falchini M, Stecco A, Carmignani L, et al. Neural network based detection of pulmonary nodules on chest radiographs. Radio Med (Torino),1999, 98(4): 259-263. 被引量:1
  • 8Nakamura K, Yoshida H, Engelmann R, et al. Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks. Radiology, 2000, 214(3): 823-830. 被引量:1
  • 9Wu Yiming, Wu Yongjun, Huang Zhuangshi, et al. Tumor markets in the diagnosis of lung cancer: New Options Using Artifical Neuron Network-Bases Tumor Marker Profiles. J Tumor Marker Oncology, 2002, 17(3):139-146. 被引量:1
  • 10DePriest PD,Shenson D,Fried A,et al. A morphology index based on sonographic findings in ovarian cancer. Gynecol Oncol, 1993,51:7-11. 被引量:1

共引文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部