期刊文献+

一种高效的多目标演化算法 被引量:1

Effective multi-objective evolutionary algorithm
下载PDF
导出
摘要 为了提高非劣解向Pareto最优前沿收敛的速度及进一步提高解的精度,在设计了一种新的杂交算子并改进了NSGA-Ⅱ的拥挤操作的基础上,提出了一种基于分级策略的多目标演化算法。数值实验表明,新算法能够非常高效地处理高维的最优前沿为凸的、非凸的和不连续前沿的多目标测试函数,得到的非劣解具有很好的分布性质。但在处理高维的具有太多局部最优前沿的多峰函数时极易陷入局部最优前沿。 This paper proposes a novel multi-objective evolutionary algorithm based on a novel crossover operation and improves crowding operation of NSGA-Ⅱ,in order to quicken further rate of convergence of solutions to Pareto optimal front and improve precision of solutions.The numeric experiments results indicate the new algorithm is very efficient for muhi-objective test problems of high-dimension with Pareto optimal front of convex or non-convex or discontinuous and convex.The obtained non-dominated solutions have a good distribution property.But as to high-dimension functions with too many local Pareto optimal fronts,it traps in local Pareto optimal front easily.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第11期75-77,86,共4页 Computer Engineering and Applications
关键词 多目标优化问题 多目标演化算法 PARETO最优 multi-objective optimization problem multi-objective evolutionary algorithm Pareto optimality
  • 相关文献

参考文献6

  • 1Coello Coello,Gregorio Toscano Pulido,Efren Mezura Montes.Current and future research trends in evolutionary multiobjective optimization[M]//Information Processing with Evolutionary Algorithms:from Industrial Applications to Academic Speculations.2005:213-231. 被引量:1
  • 2Eckart Zitzler,Kalyanmoy Deb,Lothar Thiele.Comparison of multiobjective evolutionary algorithms:empirical results[R],1999. 被引量:1
  • 3郭涛,康立山,李艳.一种求解不等式约束下函数优化问题的新算法[J].武汉大学学报(自然科学版),1999,45(5):771-775. 被引量:74
  • 4Kalyanmoy Deb,Agrawal R B.Simulated binary crossover for continuous search space[J].Complex Systems,1995,9 (2):115-148. 被引量:1
  • 5Kalyanmoy Deb,Agrawal S,Amrit Pratab.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197. 被引量:1
  • 6Hu Xiao-lin,Coello Coello,Huan Zhang-can.A new multi-objective evolutionary algorithm derived from the line-up competition algorithm[J].Engineering Optimization,2005,37 (4):351-379. 被引量:1

二级参考文献1

  • 1Pan Zhengjun,Evolutionary Computation(Ch),1998年 被引量:1

共引文献73

同被引文献13

  • 1雷德明,吴智铭.基于个体密集距离的多目标进化算法[J].计算机学报,2005,28(8):1320-1326. 被引量:23
  • 2Coello C A C.Evolutionary muhiobjective optimization:a historical view of the field[J].IEEE Computational Intelligence Magazine,2006, 1(1):28-36. 被引量:1
  • 3Kukkonen S,Deb K.A fast and effective method for pruning of non-dominated solutions in many-objective problems[C]//LNCS 4193:Parallel Problem Solving from Nature-PPSN IX,9th International Conference.Berlin: Springer, 2006: 553-562. 被引量:1
  • 4Yuan Bo,Gallagher M.On the importance of diversity maintenance in estimation of distribution algorithms[C]//Proceedings of the 2005 Conference on Genetic and Evolutionary Computation.NewYork: ACM Press,2005:719-726. 被引量:1
  • 5Ursem R K.Diversity-guided evolutionary algorithms [C]//LNCS 2439:Proceedings of the 7th International Conference on Parallel Problem Solving from Nature.London:Springer-Verlag,2002:462-474. 被引量:1
  • 6Sbalzarini I F,Mtlller S,Koumoutsakos P.Multiobjective optimization using evolutionary algorithms[C]//Proceedings of the CTR Summer Program 2000,Center for Turbulence Research,Stanford University, 2000. 被引量:1
  • 7Van Veldhuizen D A,Lamont G B.Muhiobjective evolutionary algorithms:analyzing the state-of-the-art[J].Evolutionary Computation, 2000,8(2) : 125-147. 被引量:1
  • 8Deb K.Pratap A,Agarwal S,et al.A fast and elitist muhiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation, 2002,6( 2 ) : 182-197. 被引量:1
  • 9Kukkonen S,Deb K.Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems[C]//Proceedings of the 2006 IEEE Congress on Evolutionary Computation.Piscataway,New Jersey:IEEE Press,2006:1179-1186. 被引量:1
  • 10Tran K D.An improved multi-objective evolutionary algorithm with adaptable parameters[D].Fort Lauderdale, Florida : Graduate School of Computer and Information Systems,Nova Southeastern University, 2006. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部