摘要
The paper has studied the mechanical properties and heat treatment effects on multi-element low alloy wear-resistant steel (MLAWS) used as a material for the liner of rolling mill torii. The results show that when quenched at 900-920℃ and tempered at 350-370℃, the MLAWS has achieved hardness above 60 HRC, tensile strength greater than 1 600 MPa, impact toughness higher than 18J/cm2 and fracture toughness greater than 37 MPa·m1/2. When the quenching temperature is lower than 900℃, the hardness of the MLAWS increases with the temperature. When the quenching temperature is higher than 900℃, the hardness decreases with the increase of temperature. At a quenching temperature below 920℃, the effect of quenching temperature on the impact toughness is not obvious. In quenching at above 920℃, impact toughness decreases as the temperature increases. When the tempering temperature is exceeding 450℃, the hardness begins to decrease significantly. Tempering at 350℃ has produced the best wear resistance on the MLAWS.
The paper has studied the mechanical properties and heat treatment effects on multi-element low alloy wear-resistant steel (MLAWS) used as a material for the liner of rolling mill torii. The results show that when quenched at 900-920℃ and tempered at 350-370℃, the MLAWS has achieved hardness above 60 HRC, tensile strength greater than 1 600 MPa, impact toughness higher than 18J/cm^2 and fracture toughness greater than 37 MPa· m^1/2. When the quenching temperature is lower than 900℃, the hardness of the MLAWS increases with the temperature. When the quenching temperature is higher than 900℃, the hardness decreases with the increase of temperature. At a quenching temperature below 920℃, the effect of quenching temperature on the impact toughness is not obvious. In quenching at above 920℃, impact toughness decreases as the temperature increases. When the tempering temperature is exceeding 450℃, the hardness begins to decrease significantly. Tempering at 350℃ has produced the best wear resistance on the MLAWS.