期刊文献+

具有参数摄动时滞Hopfield神经网络的鲁棒稳定性和吸引域估计

A Robust Stability and Estimation of Attraction Domain for Hopfield Neural Networks with Parameter Perturbation and Tim Delay
下载PDF
导出
摘要 针对具有参数摄动的时滞Hopfield神经网络,基于矩阵范数的概念建立了时滞依赖鲁棒稳定判据.该鲁棒稳定判据将参数摄动大小和时滞上界大小统一在一个表达式中,进而可得到时滞和参数摄动大小对网络稳定性影响的定量关系.此外,给出了局部稳定平衡点吸引域大小的估计,并通过数值仿真验证了本文结果的有效性. The delay-dependant robust stability for delayed Hoptield neural networks with asymmetric interconnection structure due to parameter perturbations is analyzed via matrix norm approach. The obtained result combines the time delay and the parameter perturbation into one expression, which shows the quantitative effects of time delay and parameter perturbation on the robust stability of Hopfield neural networks. Further, a procedure of estimating the domain of attraction of equilibrium point of Hopfield neural networks is established. A numerical example is used to prove the effectiveness of the proposed approaches.
出处 《沈阳理工大学学报》 CAS 2007年第1期21-24,共4页 Journal of Shenyang Ligong University
关键词 HOPFIELD神经网络 参数摄动 鲁棒稳定 吸引域 时滞 Hopfield neural networks parameter perturbations robust stability domain of attraction time delay
  • 相关文献

参考文献9

  • 1张化光 季策 王占山.递归人工神经网络的定性分析和综合[M].北京:科学出版社,2004.170-218. 被引量:7
  • 2Michel A N,Wang K N,Liu D R.Qualitative limitations incurred in implementations of recurrent neural networks[J].IEEE Control Systems Magazine,1995,15(1):52-65. 被引量:1
  • 3Zhang Q,Wei X P,Xu J.Delay-dependent exponential stability of cellular neural networks with time varying delays[J].Chaos,Solitons and Fractals,2005,23(10):1363-1369. 被引量:1
  • 4Lin X,Dickson R.Stability analysis of Hopfield neural networks with uncertainty[J].Mathematical and Computer Modeling.2001,34(2),353-363. 被引量:1
  • 5Gopalsamy K,He X.Stability in asymmetric Hopfield nets with transmission delays[J].Physica D,1994,76(2):344-558. 被引量:1
  • 6季策,张化光.一类具有时滞的广义Hopfield神经网络的动态分析[J].东北大学学报(自然科学版),2004,25(3):205-208. 被引量:8
  • 7Singh V.A novel global robust stability criterion for neural networks with delay[J].Physics Letters A,2005,337(2):369-373. 被引量:1
  • 8Wang L.Intelligent Optimization Algorithms with Applications[M].Beijing:Tsinghua University Press,2001.103-105. 被引量:1
  • 9Liao X X.Theory and Application of Stability for Dynamical Systems[M].Beijing:National Defense Industry Press,2000.214-215. 被引量:1

二级参考文献7

  • 1[1]Dan S. On the hysteresis and robustness of Hopfield neural networks[J]. IEEE Trans on Circuits and Systems :Analog and Digital Signal Processing, 1993,40(11):745-748. 被引量:1
  • 2[4]Liu D, Lu Z. A new synthesis approach for feedback neural networks based on the perceptron training algorithm[J]. IEEE Trans on Neural Networks, 1997,8(6):1468-1482. 被引量:1
  • 3[5]Marcus C M, Westervlet R M. Stability of analog neural networks with delay[J]. Physical Review A, 1989,39(6):347-359. 被引量:1
  • 4[7]Ye H, Michel A N, Wang K. Global stability and local stability of Hopfield neural networks with delays[J]. Physical Review E, 1994.50(5):4206-4213. 被引量:1
  • 5[8]Arisk S. Stability analysis of delayed neural networks[J]. IEEE Transactions on Circuits and System, 2000,47(7):1089-1092. 被引量:1
  • 6[9]Hopfield J J. Neurons with graded response have collective computational properties like those of two-state neurons[A]. Proceedings of the National Academy of Sciences[C]. Washington:Wiley, 1984.3088-3092. 被引量:1
  • 7[10]Michel A N, Wang K, Hu B. Qualitative theory of dynamical systemsthe role of stability preserving mappings[M]. Second Edition. New York: Marcel Dekker, 2001.205-206. 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部