期刊文献+

基于相空间重构的降噪技术研究 被引量:2

Research on Noise Reduction Techniques based on Phase Space Reconstruction
原文传递
导出
摘要 探讨了基于相空间重构的局部线性映射算法在非线性时间序列降噪技术中的应用,并给出了算法中主要参数的选取方法.实验结果表明,该算法的降噪效果明显优于传统的线性信号滤波技术.并且针对多数实测数据的原始动态模型未知的特点,提出通过计算降噪前后时序信号的关联维数作为评判降噪效果的工具,克服了已有方法中无法计算该类时序信号降噪水平的缺点. We analyze the local linear projective algorithm based phase space reconstruction in noise reduction techniques of nonlinear time series. How to choose the main parameters used in the method is also studied in this paper. We have found that new nonlinear method leads to much better results than traditional filtering techniques. Because in many experimental situations the noise-free data is unknown, it is difficult to investigate how much noise is removed from data. So we present that correlation dimension estimation from data before and after noise reduction provides a very good tool for filtering quality determination.
作者 孙海云 王峰
出处 《数学的实践与认识》 CSCD 北大核心 2007年第7期58-63,共6页 Mathematics in Practice and Theory
基金 上海市教委青年基金(04OC19)
关键词 非线性时间序列 相空间重构 噪声 关联维数 nonlinear time series phase space reconstruction noise reduction correlation dimension
  • 相关文献

参考文献5

  • 1Jochen B, Ulrichpariltz, Maciej O. Nonlinear Noise Reduction[M], Proceedings of the IEEE, 2002,90(5). 被引量:1
  • 2Schreiber T. Interdisciplinary application of nonlinear time series methods[J]. Physics Report,1998,308(1) :61--69. 被引量:1
  • 3Grassberger P, Hegger R, Kantz H, Schaffrath C, Schreiber T, On noise reduction methods for chaotic data[J].Chaos,1993,3(2):127--141 被引量:1
  • 4Kern A,Steeb W H, Stoop R. Projective noise cleaning with dynamic neighborhood selection[J]. InternationalJournal of Modern Physics, 2000, 11(1) : 139--146. 被引量:1
  • 5Kantz H, Sehreiber T. Nonlinear Time Series Analysis[M]. Cambridge, U.K: Cambridge Univ Press,1997. 被引量:1

同被引文献18

  • 1刘理,朱维杰,孙进才.信号相位匹配原理的正弦信号参数总体最小二乘估计方法[J].声学技术,2004,23(z1):128-132. 被引量:1
  • 2KHALED A. Adaptive neuro-fuzzy inference systems for extracting fetal electrocardiogram [ J ]. 2006 IEEE International Symposium on Signal Processing and Information Technology : 122-126. 被引量:1
  • 3刘森 周礼杲 杨福生.应用自适应噪声抵消技术作胎儿心电信号处理以实现胎儿监护.中国生物医学工程学报,1985,4(4):220-229. 被引量:1
  • 4MAMUN B I R, WEI L S. Adaptive linear neural network filter for feta! ECG extraction [ J ]. 2004. Proceedings of International Conference on Intelligent Sensing and Information Processing, 2004 (s) : 321-324. 被引量:1
  • 5CARLO S, GIULIA B, CAMILLO P. Fetal magnetocardiographic signals extracted by ' signal subspace' blind source separation [J]. IEEE Trans. Biomed. Eng., 2005,52(6) :1140-1142. 被引量:1
  • 6ZARZOSO V, NANDI A. Noninvasive electrocardiogram extraction: Blind separation versus adaptive noise cancellation[J]. IEEE Trans. Biomed. Eng., 2001,48 (1) : 2-18. 被引量:1
  • 7TAKENS F. On the numerical determination of the dimension of attractor[ M]. In: RAND D, YOUNG L S. Dynamical Systems and Turbulence. Warwick, 1980, Lecture Notes in Mathematics, Springer-Verlag, 1981, 898:367-381. 被引量:1
  • 8GRASSBERGER P, PROCACCIA I. Measuring the strageness of strange attractors [ J ]. Physical D, 1983,9 : 189-208. 被引量:1
  • 9KANTZ H, SCHREIBER T. Nonlinear time series analysis [ M]. Cambridge University Press, 1997:33-34. 被引量:1
  • 10Wang G,Chen D. The application of chaotic oscillators to weak signal detection[J]. IEEE Trans. Signal Proc. , 1999,46(2) :440- 444. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部