摘要
Let {Xni, 1 ≤ n,i 〈 ∞} be an an array of rowwise NA random variables and {an, n ≥ 1} a sequence of constants with 0 〈 an ↑∞ . The limiting behavior of maximum partial sums 1/an max 1≤k≤n|^k∑i=1 Xni| is investigated and some new results are obtained. The results extend and improve the corresponding theorems of rowwise independent random variable arrays by Hu and Taylor [1] and Hu and Chang [2].
Let {Xni, 1 ≤ n,i 〈 ∞} be an an array of rowwise NA random variables and {an, n ≥ 1} a sequence of constants with 0 〈 an ↑∞ . The limiting behavior of maximum partial sums 1/an max 1≤k≤n|^k∑i=1 Xni| is investigated and some new results are obtained. The results extend and improve the corresponding theorems of rowwise independent random variable arrays by Hu and Taylor [1] and Hu and Chang [2].