摘要
利用w-算子理论,给出了唯一分解整环中GV-理想的等价刻画.证明了在唯一分解整环R中,I=Ra1+…+Ran∈GV(R),当且仅当N=R(a1,…,an)是F=R(n)(n≥2)的秩为1的素子模,当且仅当N=R(a1,…,an)是F=R(n)(n≥2)的秩为1的极大子模.定义了w-模中子模的w-根.作为所得结果的应用,讨论了唯一分解整环中有限生成自由模的循环子模的w-根.
In this paper, we give some equivalent characterizations of GV-ideals over unique factorization domains by utilizing woperation theory. Let R be a unique factorization domain. Then I = Rα1 + ... + Rαn ∈ GV(R) if and only if N = R( α1 , ... ,αn ) is a prime submodule ofF=R^(n) (n≥2) such that rank(N) = 1, if and only ifN =R(α1 ,... ,αn) is a submodule off =R^(n) (n≥2) which is maximal of rank(N) = 1. In addition, we define a concept of a w-radical of a submodule of a w-module. As applications of the obtained results, the w-radicals of cyclic submodnles of finitely zenerated free modules over over unique factorization domains are discussed.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2007年第2期160-163,共4页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(10671137)
博士点专项科研基金(20060636001)
四川省应用基础研究和四川省重点学科基金资助项目