期刊文献+

指数丢番图方程|m^4-6m^2+1|~x+(4m^3-4m)~y=(m^2+1)~z的解 被引量:3

On the Solutions of the Exponential Diophantine Equation |m^4-6m^2+1|~x+(4m^3-4m)~y=(m^2+1)~z
下载PDF
导出
摘要 设a=|m^4-6m^2+1|,b=4m^3-4m,c=m^2+1,且2|m,利用Jacobi符号以及广义Fermat方程的已有解,证明指数丢番图方程a^x+b^y=c^z仅有正整数解(x,y,z)=(2,2,4). a=|m^4-6m^2+1|,b=4m^3-4m,c=m^2+1,where2|m,m ∈N. Intermsof Jacobi symbol, and a deep result of generalized Fermat equation, it is proved that the diophantine equation a^x + b^y = c^z has only one positive integer solution (x,y,z) = (2,2,4).
作者 杨仕椿
出处 《广西科学》 CAS 2007年第1期19-21,共3页 Guangxi Sciences
基金 四川省教育厅自然科学(2006C057)基金 阿坝师专校级科研基金项目(ASB06-07)资助。
关键词 指数丢番图方程 JACOBI符号 TERAI猜想 exponential diophantine equation, solutions, Jacobi symbol, Terai' s conjecture
  • 相关文献

参考文献5

二级参考文献22

  • 1Terai N., The diophantine equation ax + by = cz, Proc. Japan Acad. Ser. A, Math. Sci., 1994, 70: 22-26. 被引量:1
  • 2Cao Z. F., A note on the diophantine equation ax + by = cz, Acta A Math. Sci., 1999, 91: 85-93. 被引量:1
  • 3Le M. H., On the Terai's conjecture concerning the exponential diophantine equation ax + by = cz, Acta Mathematica Sinica, Chinese Series, 2003, 46(2): 245-250. 被引量:1
  • 4Terai N., The diophantine equation ax+by = czⅡ, Proc. Japan Acad. Ser. A, Math. Sci., 1995, 71: 109-110. 被引量:1
  • 5Dong X. L., Cao Z. F., On Terai-Jesmanowicz conjecture concerning the equation ax+by = cz, Chinese Math.Ann., 2000, 21(A): 709-714 (in Chinese). 被引量:1
  • 6Bilu Y., Hanrot G., Voutier P., (with an appendix by M Mignotte), Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew Math., 2001, 539: 75-122. 被引量:1
  • 7Voutier P. M., Primitive divisors of Lucas and Lehmer sequences, Math. Comp., 1995, 64: 869-888. 被引量:1
  • 8Bugeaud Y., On some exponential Diophantine equations, Monatsh. Math., 2001, 132: 93-97. 被引量:1
  • 9Mordell L. J.,Diophantine equations, London: Academic Press, 1969. 被引量:1
  • 10Yuan P. Z., A note on the divisibility of the generalized Lucas sequences, Fibonacci Quarterly, 2002, 2:153-157. 被引量:1

共引文献19

同被引文献15

  • 1Jesmanowicz L. Kilka uwag o liczbach pitagorejskich [J]. Wiadom Mat, 1955/1956,1 (2) .. 196-202. 被引量:1
  • 2Le M H. A note on Jesmanowicz conjecture[J]. Colloq Math,1995,69(1) ..47-51. 被引量:1
  • 3Cao Z F,Dong X L. An application of a lower bound for linear forms in two logarithms to the Terai-Jesmanowiez conjecture[J]. Acta Arith, 2003,110(2) .. 153-164. 被引量:1
  • 4Hu Y Z,Yuan P Z. On the exponential diophantine equa- tion a -{- b c" rJ]. Acta Mathematica Sinica,Chinese Series,2005,48(6) .. 1175-1178. 被引量:1
  • 5Le M H. An open problem concerning the diophantine e- quation a -1- by = c [J]. Publ Math Debrecen, 2006,68 (3/4) :283-295. 被引量:1
  • 6Le M H. A note on the Diophantine systema az q-bz = cr and aq- by = c [J-]. Acta Mathematica Sinica,Chinese Series,2008,51 (4) : 677-684. 被引量:1
  • 7Terai N.The Diophantine equation a x+by=cz[J].Proc.Japan Acad.Ser.A Math.Sci.,1994,70:22-26. 被引量:1
  • 8Le M H.The Pure Exponential Diophantine equation ax+by=cz for Generalized Pythagorean Triplets[J].Acta Mathematica Sinica Chinese Series,2010,53(6):1239-1248. 被引量:1
  • 9Le M H.Alain Togbé,Zhu H L,On a Pure ternary Exponential Diophantine equation[J].Publ.Math.Debrecen,2014,5993:1-17. 被引量:1
  • 10Le M H.A note on the Diophantine system a2+b2=cr and ax+by=cz[J].Acta Mathematica Sinica Chinese Series,2008,51(4):677-684. 被引量:1

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部