摘要
Grüner方程是研究电荷密度波的经典模型,它是一个非线性微分方程,没有解析解.通过理论分析和数值计算,给出Grüner方程的稳定解dφ/dt是一个与sinφ有相同周期的函数的见解.由此,可以方便自然地导出电荷密度波的滑移电流遵循欧姆定律的结论,并得到与Fleming的经验公式完全相同的非线性电导公式,有助于进一步理解Grüner方程和电荷密度波输运过程之间的关系.
The Grüner's equation is a classical model for studying the charge density wave, where analytical solution can not be obtained. In this paper, it is suggested that the stable solution of Grüner's equation is periodical. The conclusion was confirmed by theoretical analysis and numerical calculations. According to the conclusion, it can be naturally derived that the sliding current of a segment of charge density wave obeys the Ohm' s law. Furthermore, other results can be obtained without using any assumption, such as the formula of nonlinear conductivity and so on. The concept proposed in this paper may be helpful for the understanding of intrinsic quality of Grtiner's equation and charge density wave (CDW).
出处
《天津大学学报》
EI
CAS
CSCD
北大核心
2007年第2期243-246,共4页
Journal of Tianjin University(Science and Technology)
关键词
电荷密度波
Grüner方程
周期解
非线性电导
数值计算
charge density wave
Grtiner's equation
periodic solution
nonlinear conductivity
numerical calculation