期刊文献+

电荷密度波电输运方程——Grüner方程解的周期性

Relation Between Transportation of Charge Density Wave and Periodic Solution of Grüner′s Equation
下载PDF
导出
摘要 Grüner方程是研究电荷密度波的经典模型,它是一个非线性微分方程,没有解析解.通过理论分析和数值计算,给出Grüner方程的稳定解dφ/dt是一个与sinφ有相同周期的函数的见解.由此,可以方便自然地导出电荷密度波的滑移电流遵循欧姆定律的结论,并得到与Fleming的经验公式完全相同的非线性电导公式,有助于进一步理解Grüner方程和电荷密度波输运过程之间的关系. The Grüner's equation is a classical model for studying the charge density wave, where analytical solution can not be obtained. In this paper, it is suggested that the stable solution of Grüner's equation is periodical. The conclusion was confirmed by theoretical analysis and numerical calculations. According to the conclusion, it can be naturally derived that the sliding current of a segment of charge density wave obeys the Ohm' s law. Furthermore, other results can be obtained without using any assumption, such as the formula of nonlinear conductivity and so on. The concept proposed in this paper may be helpful for the understanding of intrinsic quality of Grtiner's equation and charge density wave (CDW).
机构地区 天津大学理学院
出处 《天津大学学报》 EI CAS CSCD 北大核心 2007年第2期243-246,共4页 Journal of Tianjin University(Science and Technology)
关键词 电荷密度波 Grüner方程 周期解 非线性电导 数值计算 charge density wave Grtiner's equation periodic solution nonlinear conductivity numerical calculation
  • 相关文献

参考文献20

  • 1冯端,金国均.凝聚态物理新论[M].上海:上海科学技术出版社,1992,232-237. 被引量:3
  • 2孙鑫.维度和凝聚态物理[J].物理学进展,1993,13(1):92-101. 被引量:3
  • 3Jaiswal Deepshika,Tulapurkar A A,Ramakrishnan S,et al.Superconducting parameters of a CDW compound Lu5Ir4Si10[J].Physica,2002,312B:142-144. 被引量:1
  • 4Seibold G,Varlamov S.Spectral properties of incommensurate CDW scattering in cooperates[J].Physica,2003,388C:309-310. 被引量:1
  • 5Lee P A,Rice T M,Anderson P W.Conductivity from charge or spin density waves[J].Solid State Commun,1974,14(8):703-709. 被引量:1
  • 6Fukuyama H,Lee P A.Dynamics of the charge density wave[J].Phys Rev,1978,17B(2):535-541. 被引量:1
  • 7Lee P A,Rice T M.Electric field depinning of charge density waves[J].Phys Rev,1979,19B(8):3970-3980. 被引量:1
  • 8Qjani M,Arbaoui A,Ayadi A,et al.Numerical simulation of the one-dimensional incommensurate charge density wave dynamics[J].Synthetic Metals,1998,96(2):137-140. 被引量:1
  • 9Degiorgi L,Alavi B,MiMly G,et al.Complete excitation spectrum of charge-density waves:Optical experiments on Ko.3MoO3[J].Phys Rev,1991,44B:7808-7819. 被引量:1
  • 10Brill J W,Emerling B M,Zhan X.Interactions of sliding charge-density waves with phonons[J].J Solid State Chem,2000,155:105-111. 被引量:1

二级参考文献30

  • 1[1]Greenblatt M 1988 Chem.Rev.88 31 被引量:1
  • 2[2]Duams J et al 1993 Int.J.Mod.Phys.B 7 4045 被引量:1
  • 3[3]Jing X N et al 2001 Phys.Rev.B 63 63 被引量:1
  • 4[4]Tian M L,Mao Z Q and Shi J 1997 Phys.Rev.B 55 2107 被引量:1
  • 5[5]Tian M L,Yue S,Li S Y and Zhang Y H 2001 Appl.Phys.Lett.89 3408 被引量:1
  • 6[6]Tian M L,Yue S,Shi J,Li S Y and Zhang Y H 2001 J.Phys.:Condens.Matter 13 311 被引量:1
  • 7[7]Dumas J and Schlenker C 1993 Int.J.Mod.Phys.B 7 4049 被引量:1
  • 8[8]Xiong R et al 2001 J.Mater.Sci.36 5511 被引量:1
  • 9[9]Schlenker C and Dumas J 1995 Philos.Mag.B 52 643 被引量:1
  • 10[10]Whangbo M H and Schneemeyer L F 1986 Inorg.Chem.25 2424 被引量:1

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部