期刊文献+

基于蚁群算法的施工项目工期-成本优化 被引量:29

Time-Cost Trade-Off of Construction Project based on Ant Colony Algorithm
原文传递
导出
摘要 工期-成本优化是施工项目计划的一个重要方面.它从实质上属于一类多目标优化问题.结合近年来提出的一种新的进化算法-蚁群算法(ACO),尝试对工期成本问题(TCTP)进行求解.通过与改进自适应权重方法(MAWA)的结合,ACO算法不仅可以找到最优解,还可以得到问题的帕雷托前沿.通过一个算例验证了算法的有效性,并和枚举法和遗传算法的计算结果进行了比较.结果表明蚁群算法对于工期成本优化问题的求解是十分适用的. The time-cost trade-off is one of the most crucial aspects of construction project planning, which in fact is a multi-objective optimization problem. A new evolutionary algorithm-ant colony optimization (ACO) algorithm was employed to solve the time-cost trade-off problem (TCTP). Combining with the modified adaptive weight approach (MAWA), the ACO algorithm can find out the optimal solution, and define the Pareto front as well. To verify the efficiency and performance of the proposed method, a test example was conducted and the results were compared with that of the exhaustive enumeration and the genetic algorithm. The results indicate that the ACO algorithm is much suitable for solving time-cost trade-off problem.
作者 熊鹰 匡亚萍
出处 《系统工程理论与实践》 EI CSCD 北大核心 2007年第3期105-111,共7页 Systems Engineering-Theory & Practice
关键词 工期成本优化 改进自适应权重 蚁群算法 多目标优化 time-cost trade-off modified adaptive weight ant colony algorithm multi-objective optimization
  • 相关文献

参考文献5

  • 1Daisy X M,Zheng S,Thomas N G,Mohan M.Kumaraswamy.Applying a genetic algorithm-based multiobjective approach for time-cost optimization[J].Journal of Construction Engineering and Management,2004,130(2):168-176. 被引量:1
  • 2Feng C W,Liu L,Burns S A.Using genetic algorithms to solve construction time-cost trade-off problems[J].Journal of Computing in Civil Engineering,1997,11(3):184-189. 被引量:1
  • 3Dorigo M,Gambardella L M.Ant colonies for travelling salesman problem[J].BioSystems,1997,43:73-81. 被引量:1
  • 4Zheng D,Ng S T,Kumaraswamy M.Applying a genetic algorithm-based multiobjective approach for time-cost optimization[J].Journal of Construction Engineering and Management,2004,130(2):168-176. 被引量:1
  • 5Zadeh L A.Fuzzy sets[J].Inf Control,1965,8:338-353. 被引量:1

同被引文献182

引证文献29

二级引证文献91

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部