期刊文献+

混凝土中心裂缝单轴拉伸损伤断裂数值模拟研究 被引量:1

Numerical Simulation of Tension Fracture in Concrete with Central Crack
下载PDF
导出
摘要 基于对混凝土细观力学的认识,假定混凝土是由砂浆基质,骨料及它们之间的界面组成的三相复合材料,各组分的材料性质按照某个给定的Weibull分布来赋值,细观单元满足弹性损伤的本构关系,应用细观力学损伤模型研究了混凝土的宏观力学性质,并且通过有限元程序对中心裂缝混凝土试件在单向拉伸情况下的破坏过程进行了数值模拟。模拟结果表明,该模型可以用来研究单向载荷作用下混凝土结构的破坏机理。 It was supposed that concrete was a three phase composite, which was composed of mortar, aggregate and their interface. The meso-structure of concrete followed Weibull distribution. A two-dimensional random distribution structural model of concrete was developed for numerical simulation of central cracks in concrete specimens with tensile stresses exerted in one direction. With the model, the routes of crack extension in mortar, aggregate, and their interface, as well as the macro stress-strain curve of concrete specimens, were derived. The results show that the method can be used to study the cracking process of concrete under single direction loads.
作者 吴愧 杨国标
出处 《力学季刊》 CSCD 北大核心 2007年第1期170-174,共5页 Chinese Quarterly of Mechanics
关键词 混凝土 损伤断裂 数值模拟 损伤阀值 WEIBULL分布 concrete damage and fracture numerical simulation threshold value Weibull distribution
  • 相关文献

参考文献12

  • 1姜福田编著..混凝土力学性能与测定[M].北京:中国铁道出版社,1989:198.
  • 2富文权 韩素芳.混凝土工程裂缝分析与控制[M].中国铁道出版社,2003.. 被引量:7
  • 3龚洛书主编..混凝土实用手册 第2版[M].北京:中国建筑工业出版社,1995:1055.
  • 4刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂[J].清华大学学报(自然科学版),1996,36(1):84-89. 被引量:183
  • 5朱万成.[D].沈阳:东北大学,2001. 被引量:5
  • 6高政国,刘光廷.二维混凝土随机骨料模型研究[J].清华大学学报(自然科学版),2003,43(5):710-714. 被引量:148
  • 7王宗敏..不均质材料(混凝土)裂隙扩展及宏观计算强度与变形[D].清华大学,1996:
  • 8Chiaia B,Veruurt A,Van Mier J G M.Lattice model evaluation of progressive failure in disordered particle composites[J].Engineering Fracture Mechanics,1997,57(2/3):301-318. 被引量:1
  • 9Van Mier J G M.Fracture Processes of Concrete:Assesment of Material Parameters for Fracture Models[M].CRC Press,Inc,1997. 被引量:1
  • 10尹双增著..断裂、损伤理论及应用[M].北京:清华大学出版社,1992:378.

二级参考文献8

  • 1Wittmann F H, Roelfstra P E, Sadouki H. Simulation and analysis of composite structures [J]. Mater Sci Engng, 1984, 68: 239-248. 被引量:1
  • 2Beddow J K, Meloy T. Testing and Characterization of Powders and Fine Particles [M]. London: Heyden, 1980. 被引量:1
  • 3Bazant Z P, Tabbara M R, Kazemi M T, et al. Random particle model for fracture of aggregate or fiber composites [J]. J Engrg Mech ASCE, 1990, 116: 1686-1705. 被引量:1
  • 4Schorn H, Rode U. Numerical simulation of crack propagation from microcracking to fracture [J]. Cem Concr Compos, 1991, 13: 87-94. 被引量:1
  • 5Schlangen E, van Mier J G M. Simple lattice model for numerical simulation of fracture of concrete materials and structures [J]. Mater Struct, 1992, 25: 534-542. 被引量:1
  • 6Wang Z M, Kwan A K H, Chan H C. Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh [J]. Computers and Structures, 1999, 70: 533-544. 被引量:1
  • 7De Schutter G, Taerwe L. Random particle model for concrete based on Delaunay triangulation [J]. Mater Struct, 1993, 26: 67-73. 被引量:1
  • 8E. Schlangen,J. G. M. Mier. Simple lattice model for numerical simulation of fracture of concrete materials and structures[J] 1992,Materials and Structures(9):534~542 被引量:1

共引文献311

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部