期刊文献+

三角洲河口砂坝微相变差函数规律研究

VARIATION FUNCTION REGULARITY OF CHANNEL MOUTH BAR MICROFACIES IN DELTA DEPOSITION
下载PDF
导出
摘要 以某凝析气田为例,在三角洲河口砂坝储集层非均质性研究基础上,利用多方向水平井孔隙度资料,求取并拟合了平面储集层变差函数。结合直井变差函数分析认为,三角洲前缘河口砂坝平面上储集层参数统计分布规律与垂向上分布是相似的,二者的变差函数都以球状模型为主;直井垂向变程平均为1.2 m,代表了单个河口砂坝的垂直厚度,水平井平面长轴主变程为24-36 m,短轴次变程为8-16 m,分别代表了单个河口砂坝的平面长度和宽度;长轴主变程与短轴次变程比为2∶1到3∶1之间,平面长轴主变程与垂直变程之比为20∶1到30∶1之间,短轴次变程与垂直变程之比为6∶1到13∶1之间。 Based on the analysis of the heterogeneity of channel mouth bar reservoir, the horizontal variation function is given and matched by using the porosity data from the multi-directional horizontal wells. Combined with the variation function of vertical wells, it is considered that the statistic distribution of the delta front mouth bar reservoir parameter in horizontal direction is similar to that of reservoir parameters in vertical direction, and the variation functions are dominated by spherical model. The vertical range of vertical wells averages about 12 m,which represents the vertical thickness of a single mouth bar; the plane long-axis range of horizontal wells ranges from 24 m to 36 m and the short-axis range of them ranges from 8 m to 16 m, which represent the length and width of single mouth bar, respectively. The ratio between the long-axis range and the short-axis range is about 2 : 1~3 : 1; the ratio between the plane long-axis range and the vertical range is about 20 : 1~30 : 1, and the ratio between the short-axis range and the vertical range is about 6 : 1~13 : 1.
出处 《天然气地球科学》 EI CAS CSCD 2007年第2期298-302,共5页 Natural Gas Geoscience
关键词 河口砂坝 变差函数 变程 水平井 Channel mouth bar Variation function Variogram Range Horizontal well.
  • 相关文献

参考文献10

二级参考文献44

  • 1田冷,何顺利,顾岱鸿.苏里格气田储层三维地质建模技术研究[J].天然气地球科学,2004,15(6):593-596. 被引量:36
  • 2吴胜和,李文克.多点地质统计学——理论、应用与展望[J].古地理学报,2005,7(1):137-144. 被引量:126
  • 3周叶 王家华.估计渗透率的空间分布的方法--顺序指示模拟.中国数学地质卷3[M].北京:地质出版社,1991.. 被引量:1
  • 4Liu Y.Downscaling seismic data into a geologically sound numerical model.Ph.D thesis,2003.Stanford University. 被引量:1
  • 5Journel A.G,Multiple-point Geostatistics:a state of the art.Stanford Center For Reservoir Forecasting.2003. 被引量:1
  • 6Arpat B.G and Jef Caers.A multi-scale,pattern-based approach to sequential simulation.Stanford Center for reservoir Forecasting,2003 被引量:1
  • 7FARMER C L.The generation of stochastic fields of reservoir parameters with specified geostatistical distributions[C]//EDWARDS S,KING P R.Mathematics in oil production.Oxford:Clarendon Press,1998:235-252. 被引量:1
  • 8CAERS J.JOURNEL A G.Stochastic reservoir simulation using neural networks trained on outcrop data[C].SPE 49026,1998. 被引量:1
  • 9GUARDIANO F,SRIVASTAVA R M.Multivariate geostatistics:beyond bivariate moments,geostatistics-troia[J].Kluwer Academic Publications,Dordrecht.1993(1):113-114. 被引量:1
  • 10STREBELLE S,JOURNEL A G.Reservoir modeling using multiple-point statistics[C].SPE 71324,presented at the 2001 SPE Annual Technical Converence and Exhibition. 被引量:1

共引文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部