期刊文献+

局部凸空间的P-自反性和某些凸性光滑性之间的对偶特征(Ⅰ)(英文) 被引量:1

P-reflexivity and Dual Characterizations between Some Convexity and Smoothness of Locally Convex Spaces(Ⅰ)
下载PDF
导出
摘要 设X是实线性空间,P是X上的一族分离半范数且TP是X上由P生成的局部凸分离拓扑.引入半范数族P的S-最简形式和P-自反局部凸空间(X,TP)的概念,证明了半范数族P和它的每一个S-最简形式都生成X上相同的局部凸拓扑.此外,讨论了P-自反性和自反性之间的关系.还指出当X是赋范线性空间时,P-自反性和自反性是两个等价概念. Let X be a real linear space,P a family of separated seminorms on X and Tp the locally convex separated topology on X generated by P. The concepts of the S-simplest form of a seminorm family P and the P-reflexive locally convex space (X,Tp) are introduced. The seminorm family P and its every S-simplest form generate the same locally convex separated topology on X are proved. Moreover ,the relations between the P-reflexivity and the reflexivity are discussed. It is shown that the P-reflexivity and the reflexivity are two equivalent concepts when X is a normed linear space.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第2期138-144,共7页 Journal of Inner Mongolia University:Natural Science Edition
基金 内蒙古自然科学基金资助项目(200308020101)~~
关键词 局部凸空间 S-最简半范数族 P-自反空间 偶对 凸性 光滑性 locally convex space iS-simplest seminorm family P-reflexive space dual pair convexity smoothness
  • 相关文献

参考文献21

  • 1Borluh Lin,Yu Xintai.On the K-uniformly rotund and the fully convex Banach spaces[J].J.Math.Anal.Appl.,1985,110:407~410. 被引量:1
  • 2Day M M.Strict convexity and smoothness of normed spaces[J].Trans.Amer.Math.Soc,1955,78:516~528. 被引量:1
  • 3Day M M.Normed linear spaces[M].New York:Springer Berlin,1973. 被引量:1
  • 4Diestel J.Geometry of Banach Spaces-Selected Topics[A].Lecture Notes in Math[C].New York:SpringVerlag,1975.485. 被引量:1
  • 5Hao Fei,Liu De,Luo Cheng.Further exploration for convexity and smoothness in Banach spaces (I)(I)[J].Acta Scientiarum Naturalium Universitis NeiMongol,2002,33 (1):7 ~ 11 ; 2002,33 (2):125 ~ 129. 被引量:1
  • 6Klee V L.Some new results on smoothness and rotundity in normed linear spaces[J].Math.Ann.,1959,139:51~53. 被引量:1
  • 7Panda B B,Kapoor O P.A generalization of locally uniform convexity of the norm[J].J.Math.Anal.Appl,1975,52:300~308. 被引量:1
  • 8Smith M A,Sullivan F.Extrem Smooth Banach Spaces[J].Lecture Note in Math.,1977,604:125~137. 被引量:1
  • 9Yu Xintai.Introduction to Banach space geometry[M].Shanghai:East China Normal University,1986. 被引量:1
  • 10Clarkson J A.Uniformly convex spaces[J].Trans.Amer.Math.Soc.,1936,40:396~414. 被引量:1

同被引文献8

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部