期刊文献+

一阶脉冲微分方程周期边值问题的正解

Positive Solutions for First Order Periodic Boundary Value Problem with Impulses
下载PDF
导出
摘要 利用锥上的不动点定理讨论了一阶脉冲微分方程周期边值问题的正解的存在性. By using the fixed point theorem on cone, this paper studies the existence of positive solutions for first order periodic boundary value problem with impulses.
出处 《广东工业大学学报》 CAS 2007年第1期85-88,共4页 Journal of Guangdong University of Technology
关键词 脉冲微分方程 周期边值问题 不动点定理 impulsive differential equations periodic boundary value problem cone fixed point theorem
  • 相关文献

参考文献3

  • 1柴国庆.脉冲周期边值问题拟线性化方法[J].系统科学与数学,2003,23(3):390-397. 被引量:2
  • 2Dingbian Qian,Xinyu Li.Periodic soultions for ordinary differential equations with sublinear impulsive effects[J].J.Math.Anal.Appl.,2005,303:288-303. 被引量:1
  • 3郭大钧,孙经先,刘兆理著..非线性常微分方程泛函方法[M].济南:山东科学技术出版社,1995:247.

二级参考文献10

  • 1Lakshmikantham V,Bainov D D and Simeonov P S. Theory of Impulsive Differential Equations.World Scientific. Singpore, 1989. 被引量:1
  • 2Guo Dajun. Second order impulsive integro-differential equations on unbounded domains in Banach suaces. Nonlinear Analysis, 1999, 35: 413-423. 被引量:1
  • 3Frigon M and O'Regan D. First order impulsive initial and periodic with variable moments. J.Math. Anal. Appl., 1999, 233: 730-739. 被引量:1
  • 4Lakshmikantham V, Malek S. Generalized quasilineaxization. Nonlinear World., 1994, (1): 59-63. 被引量:1
  • 5Mohapatra R N, Vajravelu K. Generalized quasilinearization method and rapid convergence for first order initial value problems. J. Math. Anal. Appl., 1997, 207: 206-219. 被引量:1
  • 6Eloe P W, Zhang Yongzhi. A quaclric monotone iteration scheme for two-point boundary value problems for ordinary differential equations. Nonlinear Analysis, 1998, 33: 443-453. 被引量:1
  • 7Mohapatra R N, Vajravelu K, Yin Y. Generalized quasilinearization method for second-order boundary value problems. Nonlinear Analysis. 1999, 36: 799-806. 被引量:1
  • 8Guo Dajun, Lakshmilkantham V and Liu Xinzhi. Nonlinear Integral Equations in Abstract Space.Kluwer Academic Publishers. 1996, 255-256. 被引量:1
  • 9韦忠礼.Banach空间一阶非线性脉冲微分方程周期边值问题的解[J].系统科学与数学,1999,19(3):378-384. 被引量:17
  • 10柴国庆.Banach空间中非线性脉冲微分-积分方程的极值解[J].数学物理学报(A辑),2000,20(1):74-80. 被引量:8

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部