期刊文献+

主成分分析方法(PCA)在车辆牌照识别中的应用 被引量:5

Principal Component Analysis (PCA) Method Application for License Plate Recognition
下载PDF
导出
摘要 将主成分分析方法(PCA)应用于车牌识别。首先根据采集到样本分类构造各类样本对应特征子空间,然后对待识别字符图片进行预处理,再分别向各类特征空间投影,根据重构误差判断类别识别字符。 The paper proposes principal component analysis (PCA) method application for license plate recognition. PCA constructs corresponding feature subspaces for the sample images and preprocesses the sample character images, then projects the unidentified character image to the feature space and recognises character using classification judgement based on the reconstruct error. Experiments confirm that the PCA method can keep much image information and is robust for character recognition distortion. As a result improved recognition performance is achieved.
作者 邬岚 张桂林
出处 《计算机与数字工程》 2007年第3期110-112,共3页 Computer & Digital Engineering
关键词 车牌识别 特征空间 奇异值分解(SVD) 主成分分析(PCA) License Plate Recognition,feature space,singular value decomposition (SVD),principal component analysis (PCA)
  • 相关文献

参考文献7

  • 1胡薇.基于特征空间的3D目标识别方法研究.华中科技大学,2004. 被引量:1
  • 2Richard O.Duda,Peter E.Hart,David G.Stork著.李宏东,姚天翔译.模式分类[M].北京:机械工业出版社,2003. 被引量:7
  • 3L.I.Smith.A tutorial on principal components analysis[ EB/OL].Http://csnet.otago.ac.nz/cosc453/student_tutorials/principal_components.Pdf 2002. 被引量:1
  • 4M.A.Turk and A.P.Pentland.Face recognition using eigenfaces[ C ].In Proc.Of Computer Vision and Pattern Recognition,pages 586~591.IEEE,June 1991b. 被引量:1
  • 5Ming-Hsuan Yang Narendra Ahuja David Kraegman.Face Recognition Using Kernel Eigenfaces[ C ].Image Processing,2000.Proceedings.2000 International Conference.10~13 Sept.2000 Volume:1.On page(s):37~40 vol.1. 被引量:1
  • 6M.Turk and A.Pentland.Eigenfaces for recognition.Journal of Cognitive Neuroscience,3 (1),1991a.URL[ EB/OL].Http://www.cs.ucsb.edu/~nturk/Papers/jcn.Pdf. 被引量:1
  • 7da Rocha Gesualdi,A.; Manoel de Seixas,J.; Character recognition in car license plates based on principal components and neural processing; Neural Networks,2002.SBRN 2002.Proceedings.Ⅶ Brazilian Symposium on 11~14 Nov.2002,206~211. 被引量:1

共引文献6

同被引文献39

引证文献5

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部