期刊文献+

乙型病毒性肝炎数学模型及其控制 被引量:4

Mathematical Model of Hepatitis B and Its Control
下载PDF
导出
摘要 针对乙型肝炎病毒的传播方式以及各种状态间的转化模式,建立由微分方程表达的乙型肝炎数学模型.分析表明,如果该模型有正平衡点,则疾病消除点不稳定,此时该传染病将会蔓延,因此应对疾病实施有效控制:在采取母婴阻断和新出生婴儿免疫控制方法的基础上,再对易感人群施加免疫控制.构造出一个Lyapunov函数,应用Lyapunov稳定性理论,证明了施加上述控制后,该传染病模型在疾病消除点全局渐近稳定,即乙肝病毒最终可以灭绝,并得出了乙肝病毒最终消除的免疫条件. Tries to develop a mathematical model to express how the hepatitis B virus (HBV) spreads over and transforms from a state into other one by a set of differential equations. A conclusion can be drawn from it that if there is a positive equilibrium point found in the model, the disease elimination point is unstable and the infectious disease will spread over. It means that the disease or the model should be controlled effectively by way of immunization, i.e., isolating infants from their mothers and immunizing all infants. A Lyapunov function is therefore constructed and, according to the relevant theory of stability, it is proved that the model is globally stable at the disease elimination point after the immune control and, eventually, HBV will be eliminated. In addition, the conditions are obtained for extinction of HBV.
机构地区 东北大学理学院
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第3期308-311,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60574011)
关键词 传染性疾病 乙型肝炎病毒 免疫控制 数学模型 全局渐近稳定 infectious disease hepatitis B virus (HBV) immune control mathematical model globally asymptotic stability
  • 相关文献

参考文献9

  • 1Zhao S J,Xu Z Y,Lu Y.Mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China[J].International Journal of Epidemiology,2000,29(4):744-752. 被引量:1
  • 2El-Gohary A,Bukhari F A.Optimal stabilization of steadystates of the genital herpes epidemic during infinite and finite time intervals[J].Applied Mathematics and Computation,2003,137(1):33 -47. 被引量:1
  • 3Matveev A S,Savkin A V.Application of optimal control theory to analysis of cancer chemotherapy regimens[ J ].Systems & Control Letters,2002,46 (5):311-321. 被引量:1
  • 4Ogren P,Martin C F.Vaccination strategies for epidemics in highly mobile populations[ J ].Applied Mathematics and Computation,2002,127(2):261-272. 被引量:1
  • 5Alfonseca M.Bravo M T M,Torres J L.Mathematical model for the analysis of hepatitis B and AIDS epidenics[ J].Simulation,2000,74(4):219-226. 被引量:1
  • 6Medley G F,Lindop N A,Edmunds W J,et al.Hepatitis-B virus endemicity:heterogeneity catastrophic dynamics and control[J ].Nature Medicine,2001,7(5):619-624. 被引量:1
  • 7徐洁,周义仓.具有比例和脉冲接种的乙肝流行病模型[J].生物数学学报,2004,19(2):149-155. 被引量:16
  • 8刘士敬,朱倩.乙型肝炎解惑答疑[M].北京:中国医药科技出版社,2003:1-179. 被引量:1
  • 9曹惠霖.乙型肝炎的流行状况[J].中国计划免疫,1996,2(2):88-90. 被引量:81

二级参考文献2

  • 1Pierre Van Damme. Hepatitis B prevention in Europe: a preliminary economic evaluation[J]. Vaccine, 1995,13(1):54-57. 被引量:1
  • 2Arie J, Zuckerman, Howard C. Thomas. Viral Hepatitis[M]. London: Harcourt Asia Churchill Livingstone,1999, 107-109. 被引量:1

共引文献95

同被引文献22

  • 1付景超,井元伟,张中华,张嗣瀛.具垂直传染和连续预防接种的SIRS传染病模型的研究[J].生物数学学报,2008,23(2):273-278. 被引量:33
  • 2HYMAN J M,LI J.An intuitive formulation for the reproductive number for the spread of diseases in Heterogeneous populations[J].Mathematical Biosciences,2000,167(1):65-86. 被引量:1
  • 3Alberto d'Onofrio.On pulse vaccination strategy in the SIR epidemic model with vertical transmis-sion[J].Applied Mathematics letters, 2005, 18(7): 729-732. 被引量:1
  • 4Roberts M G,Kao R R.The dynamics of an infections disease in a population with birth pulse[J].Math Biosci,1998, 149(1): 23-26. 被引量:1
  • 5谢幸.妇产科学[M].北京:人民卫生出版社,2013:274. 被引量:385
  • 6张悦,张庆灵,赵立纯.一类生物经济系统的分析与控制[J].控制工程,2007,14(6):599-602. 被引量:7
  • 7马知恩.种群生态学的数学建模与研究[M].舍肥:安徽教育出版社,2000:101.115. 被引量:1
  • 8Pang Jianhua,Cui Jing-an,Zhou Xueyong.Dynamical behavior of a hepatitis B virus transmission model with vaccination[J].Journal of Theoretical Biology,2010,265(4):572-578. 被引量:1
  • 9Zhang Suxia,Zhou Yicang.The analysis and application of an HBV model[J].Applied Mathematical Modelling,2012,36(3):1302-1312. 被引量:1
  • 10Medley Graham F.,Lindop Nathan A.,Edmunds W.John,Nokes D.James,Hepatitis-B virus endemicity:heterogeneity,catastrophic dynamics and control[J].Nature Medicine,2001,7(5):619-624. 被引量:1

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部