摘要
Many structural and functional properties possessed by plants have great potentials to stimulate new concepts and innovative ideas in the field of biomimetic engineering. The key inputs from biology can be used for creation of efficient and optimized structures. The study of the geometry and folding pattern of leaves of Mimosa pudica, referred as Sensitive Plant, reveals some of the peculiar characteristics during folding and unfolding. When the leaf is touched, it quickly folds its leaflets and pinnae and droops downward at the petiole attachment. With the help of experiments on simulation model, the variations in angle of leaflets and degree of compaction after folding are investigated.
Many structural and functional properties possessed by plants have great potentials to stimulate new concepts and innovative ideas in the field of biomimetic engineering. The key inputs from biology can be used for creation of efficient and optimized structures. The study of the geometry and folding pattern of leaves of Mimosa pudica, referred as Sensitive Plant, reveals some of the peculiar characteristics during folding and unfolding. When the leaf is touched, it quickly folds its leaflets and pinnae and droops downward at the petiole attachment. With the help of experiments on simulation model, the variations in angle of leaflets and degree of compaction after folding are investigated.