摘要
报道了在国内首次实现的矩形激波管内气/液界面上(即Atwood number,A1)的Richtmyer-Meshkov(RM)不稳定性现象。实验在一台垂直矩形激波管中进行,得到了较低马赫数(M=1.36和1.58)下,多元扰动R-M不稳定性后期阶段气泡和尖钉高度对时间的增长规律,即气泡高度hb^t0.55±0.01,尖钉高度hs^t。当激波马赫数从1.36增加到1.58时,气泡和尖钉高度对时间的指数规律没有发生明显改变,气泡的增长速度没有受到影响,而尖钉增长速度却有大幅度的增加。同时还观察研究了多元扰动R-M不稳定性中典型的气泡竞争现象。
This paper presents an experimental study of Richtmyer-Meshkov(R-M) instability at an interface between water and air using a rectangular shock tube. When the Atwood number approaches to 1, the R- M asymptotic bubble and spike evolutions are found to obey a power law: hb ~t^0.55±0.01 ,hs ~t. The power law doesn't change when the Mach number increases from 1.36 to 1.58, but u, increases very much. This paper also observes and studies the phenomenon of bubble competition, i.e. lager bubbles overtake their smaller neighbors.
出处
《实验流体力学》
EI
CAS
CSCD
北大核心
2007年第1期25-30,共6页
Journal of Experiments in Fluid Mechanics
基金
中国科学院"百人计划"基金