期刊文献+

气/液界面上Richtmyer-Meshkov不稳定性的实验研究 被引量:3

Experimental study of Richtmyer-Meshkov instability at a gas/liquid interface in a shock tube
下载PDF
导出
摘要 报道了在国内首次实现的矩形激波管内气/液界面上(即Atwood number,A1)的Richtmyer-Meshkov(RM)不稳定性现象。实验在一台垂直矩形激波管中进行,得到了较低马赫数(M=1.36和1.58)下,多元扰动R-M不稳定性后期阶段气泡和尖钉高度对时间的增长规律,即气泡高度hb^t0.55±0.01,尖钉高度hs^t。当激波马赫数从1.36增加到1.58时,气泡和尖钉高度对时间的指数规律没有发生明显改变,气泡的增长速度没有受到影响,而尖钉增长速度却有大幅度的增加。同时还观察研究了多元扰动R-M不稳定性中典型的气泡竞争现象。 This paper presents an experimental study of Richtmyer-Meshkov(R-M) instability at an interface between water and air using a rectangular shock tube. When the Atwood number approaches to 1, the R- M asymptotic bubble and spike evolutions are found to obey a power law: hb ~t^0.55±0.01 ,hs ~t. The power law doesn't change when the Mach number increases from 1.36 to 1.58, but u, increases very much. This paper also observes and studies the phenomenon of bubble competition, i.e. lager bubbles overtake their smaller neighbors.
出处 《实验流体力学》 EI CAS CSCD 北大核心 2007年第1期25-30,共6页 Journal of Experiments in Fluid Mechanics
基金 中国科学院"百人计划"基金
关键词 激波管 RICHTMYER-MESHKOV不稳定性 气泡竞争 多元扰动 shock tube Richtmyer-Meshkov instability bubble competition muhimode perturbations
  • 相关文献

参考文献16

  • 1RICHTMYER R D.Taylor instability in shock acceleration of compressible fluids[J].Commun.Pure Appl.Math.,1960,13:297-319. 被引量:1
  • 2MESHKOV E E.Instability of the interface of two gases accelerated by a shock wave[J].Fluid Dynamics,1969,4:101-104. 被引量:1
  • 3王继海.超新星爆发和流体力学不稳性[J].百科知识,1991(1):42-43. 被引量:1
  • 4SADOT O,EREZ L,ALON U,et al.Study of Nonlinear Evolution of Single-Model and Two-Bubble Interaction under Richtmyer-Meshkov Instability[J].Physical review letters,1998,80(8):1654-1657. 被引量:1
  • 5BROUILLETTE M,STURTEVANT B.Growth induced by multiple shock waves normally incident on plan gaseous interface[J].Physica D,1989,37:248-263. 被引量:1
  • 6HOUAS L,CHEMOUNI I.Experimental investigation of Richtmyer-Meshkov instability in shock tube[J].Physics of Fluids,1996,8:614-627. 被引量:1
  • 7POGGI E,THOREMBEY M H,RODRIGUZ G.Velocity measurements in turbulent gaseous mixtures induced by Richtmyer-Meshkov instability[J].Physics of Fluids,1998,10:2698-2700. 被引量:1
  • 8ALON U,HECHT J,MUKAMEL D,et al.Scale Invariant Mixing Rates of Hydrodynamically Unstable interface[J].Physical review letters,1994,72:2867-2870. 被引量:1
  • 9SHARP D H.An overview of Rayleigh-Taylor instability[J].Physica D,1984,12:3-18. 被引量:1
  • 10RIKANATI A,ALON U,SHVARTS D.Vortex model for the nonlinear evolution of the multimode Richtmyer-Meshkov instability at low Atwood numbers[J].Physical review E,1998,58:7410-7418. 被引量:1

二级参考文献14

  • 1Joseph D D, Belanger J, Beavers G S. Breakup of a liquid drop suddenly exposed to a high-speed airstream [J]. Int J Multiphase Flow, 1999,25 : 1263--1303. 被引量:1
  • 2WANG Xiao-liang, SHI Hong-hui, Itoh M, et al. Flow visualization of high-speed pulsed liquid jet [A]. Proc SPIE [C]. 2000, 899--906. 被引量:1
  • 3SHI Hong-hui, WANG Xiao-liang, Itoh M, et al. Acceleration of water column and generation of large flow rate water spray by shock tube [J]. JSME Int J Ser B, 2001,44(4) ,543--551. 被引量:1
  • 4WANG Xiao-liang , Itoh M, SHI Hong-hui, et al. Experimental study of Rayleigh-Taylor instability in a shock tube[J]. Jpn J Appl Phys, 2001,40(11):6668--6674. 被引量:1
  • 5SHI Hong-hui, WANG Xiao-liang. Hydrodynamic shock tube for quick transportation of spray with large flow rate[J]. Experiments in Fluids, 2002,32(2), 280-- 282. 被引量:1
  • 6Richtmyer R D. Taylor instability in shock acceleration of compressible fluids [J]. Commun Pure Appl Math,1960,13:297--319. 被引量:1
  • 7Meshkov E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969,4:101--104. 被引量:1
  • 8Prestridge K, Rightley R M, Vorobieff P, et al. Simultaneously density-field visualization and PIV of a shock-accelerated gas curtain [J]. Experiments in Fluids, 2000,29:339--346. 被引量:1
  • 9Praaad J K, Rasheed A, Kurmar S, et al. The late-time development of the Richtmyer-Meshkov instability[J].Phys of Fluids, 2000,12(8):2108--2115. 被引量:1
  • 10Lewis D J. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes--Ⅱ [J].Proc Roy Soc London Ser A, 1950,202:81--96. 被引量:1

共引文献14

同被引文献22

  • 1施红辉,卓启威.Richtmyer-Meshkov不稳定性流体混合区发展的实验研究[J].力学学报,2007,39(3):417-421. 被引量:9
  • 2RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids [J]. Commun. Pure Appl. Math, 1960,13 :297-319. 被引量:1
  • 3MESHKOV. Instability of the interface of two gases accelerated by a shock wave[J]. Transl. of Izv. Acad. Sci. USSR Fluid Dyn. ,1969,4: 101-104. 被引量:1
  • 4ZHANG Q, SOHN S. An analytical nonlinear theory of Richtmyer-Meshkov instability [J]. Physieal Letter A, 1996,212: 149-155. 被引量:1
  • 5BENJAMIN B, BESNARD D, HAAS J. Shock and reshock of an unstable interface [M]. LA2UR 9221185, 1993. 被引量:1
  • 6HAAS J F,STURTEVAN B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities [J]. J. Fluid Mech. ,1987,181 : 41-76. 被引量:1
  • 7JACOBS J W. Shock-induced mixing of a light-gas cylinder[J]. J. Fluid Mech. , 1992,234 : 629-649. 被引量:1
  • 8ANDERSON M H , PURANIK B P , OAKLEY J G, et al. Shock tube investigation of hydrodynamic issues related to inertial confinement fusion[J]. Shock Waves,2000, 13: 377-387. 被引量:1
  • 9HOSSEINI S H, TAKAYAMA K. Experimental study of Richtmyer-Meshkov instability induced by cylindrical shock waves[J]. Phys. Fluids, 2005,17 : 084101. 被引量:1
  • 10SUN M, TAKAYAMA K. Conservative smoothing on an adaptive quadrilateral grid[J]. J. of Comp. Phys. , 1999, 150:143-180. 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部