期刊文献+

圆柱壳几何大变形非线性频率求解的渐近摄动法 被引量:1

ASYMPTOTIC APPROACH TO SOLUTION FOR NONLINEAR FREQUENCIES OF THIN CYLINDRICAL SHELLS WITH LARGE DEFORMATION
下载PDF
导出
摘要 为解决圆柱壳在工作状态中由几何大变形而引起的弱非线性振动问题,将渐近摄动法引入求解考虑几何非线性的薄壁圆柱壳振动频率。首先,应用Donnell’s简化壳理论获得了考虑几何大变形情况下具有位移三次项的非线性频率方程,把位移及频率以非线性参数的幂级数形式展开,并令同次幂的非线性项系数相等,由此得到非线性频率一次近似值与初始振幅的一系列耦合代数方程,引入Galerkin’s方法对非线性频率方程进行解耦正交并忽略其中的永年项,考虑了对应实数根,各阶频率对应的振幅间不存在相互耦合的内共振现象,最终在引入小参数后用摄动法求出了非线性频率的一次近似解。计算结果表明,几何非线性使薄壁圆柱壳产生硬化,其非线性频率升高,并同时讨论了线性、非线性频率与节径数及初始位移之间的关系。 To solve weak-nonlinear vibration problems of cylindrical shells with large deformation, an asymptotic approach to solution for natural frequencies of a thin cylindrical shell with geometric nonlinearities is proposed. Starting with the Donnel's shallow-shell theory, its nonlinear frequency equations with cubic of displacement are obtained. Its displacement and frequency are expanded in a power series of a small nonlinear parameter. The coefficient of the nonlinear item with the same order is equal. It leads to a set of coupled nonlinear algebraic equations about the first order approximations of nonlinear frequencies and initial amplitudes. The frequency equations are orthogonal and uncoupled by Galerkin's method and their secular terms are eliminated. Considering real solutions and no internal resonance between amplitudes of different modes, the perturbation method with small parameter is used and the first order approximations of nonlinear frequencies are finally acquired. Results show that nonlinear frequencies increase with effect of large geometric deformation taken Relationships among linear frequencies, nonlinear frequencies and initial displacements are discussed.
机构地区 东北大学
出处 《振动与冲击》 EI CSCD 北大核心 2007年第3期42-44,67,共4页 Journal of Vibration and Shock
基金 教育部重大基础研究前期研究专项(2003CCA03900)
关键词 几何非线性 渐近法 摄动法 非线性频率 内共振 geometric nonlinearities, asymptotic approach, perturbation method, nonlinear frequencies, internal resonance
  • 相关文献

参考文献11

  • 1Lee Young-Shin,Kim Young-Wann.Nonlinear free vibration analysis of rotating hybrid cylindrical shells[J].Computers & Structures,1999,70:161-168. 被引量:1
  • 2Amabili M.A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells:Lagrangian approach[J].Journal of Sound and Vibration,2003,264:1091-1125. 被引量:1
  • 3Ganapathi M,Kvaradan T.Nonlinear free flexual vibrations of laminated circular cylindrical shells[J].Composite Structure,1995,30:33-49. 被引量:1
  • 4Ganapathi M,Kvaradan T.Large amplitude vibrations of circular cylindrical shells[J].Journal of Sound and Vibration 1996,192(1):1-14. 被引量:1
  • 5江晓禹,张相周.圆柱壳非线性振动的多重模式分析[J].应用力学学报,1997,14(1):5-10. 被引量:3
  • 6Amabili M,Rellicano F.Multimode approach to nonlinear supersonic flutter of imperfect circular cylindrical shell[J].Journal of Applied Mechanics,2002,69:117-129. 被引量:1
  • 7Andrianov I V,Danishovs'ky V V.Asymptotic approach for non-linear periodical vibrations of continuous structures,Journal of Sound and Vibration,2002,249(3):465-481. 被引量:1
  • 8Nayfeh A H,Rauf R A.Non-linear oscilation of circular cylindrical shells[J].Journal of Solids Structures,1987,23(12):1625-1638. 被引量:1
  • 9Amabili M,Pellicano F,Paydoussis M P.Non-linear dynamics and stability of circular cylindrical shells containing flowing fluid,part Ⅲ:Truncation effect without flow and experiments[J],Journal of Sound and Vibration 2000,237(4):617-640. 被引量:1
  • 10Pellicano F,Amabili M.Stability and vibration of empty and fluid-filled circular cylindrical shells under static and periodic axial loads[J].International Journal of Solids and Structures,2003,40:3229-3251. 被引量:1

二级参考文献3

  • 1Hui D,ASME Appl Mech Div,1984年,51卷,383页 被引量:1
  • 2Chia Chuenyuan,Nonlinear Analysis of Plates,1980年,15页 被引量:1
  • 3朱兆祥,非线性弹性力学基础(译),1959年,30页 被引量:1

共引文献2

同被引文献9

  • 1Sakaguchi R L, Wiltbank B D, Murchison C F. Prediction of composite elastic modulus and polymerization shrinkage by computational micromechanics [ J ]. Dental Materials, 2004,20 (4) : 397 - 401. 被引量:1
  • 2Kostopoulos V, Loutas T H, Sotiriadis G. On the Young' s modulus measurements of ceramic and carbon fibres using elastic wave propagation techniques: comparison against quasi-static tensile tests [J ]. Advanced Composites Letters, 2004,13(2) : 131 - 137. 被引量:1
  • 3Jinen E, Tanaka M, Maeda T, et al. Changes of dynamic modulus of polyethylene steel composites under repeated plane bending[ J ]. Chemistry of High Polymers, 1971,28 (3) : 968 - 972. 被引量:1
  • 4Gilbert J L, Dong D R. Numerical time-frequency transform technique for the determination of the complex modulus of composite and polymeric biomaterials from transient timebased experiments [ C ]//Proceedings of the Symposium on Biomaterials' Mechanical Properties. Pittsburgh, 1992 : 14 - 18. 被引量:1
  • 5Yeh G C K. Forced vibration of a two-degree-of-freedom system with combined Coulomb and viscous damping [J ]. Journal of Acoustical Society of America, 1964,39 ( 1 ) : 15 - 24. 被引量:1
  • 6Fox C H J, Hardie D J W. Harmonic response of rotating cylindrical shell[J]. Journal of Sound and Vibration, 1985, 101(4) :495 - 510. 被引量:1
  • 7Werner S. Vibrations of shells and plates[M]. New York: Marcel Dekker, 1981:135-151. 被引量:1
  • 8Lam K Y, Loy C T. Analysis of rotating laminated cylindrical shells by different thin shell theories[J]. Journal of Sound and Vibration, 1995,186( 1 ) : 23 - 35. 被引量:1
  • 9李永强,郭星辉,刘杰.求解旋转板、壳振动问题的半解析有限元分析[J].东北大学学报(自然科学版),2002,23(6):585-588. 被引量:6

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部