摘要
本文讨论了如下半线性方程Dirichlet问题的概率数值解法。其中为有界区域,c(x)是D上有界Holder连续函数,f(x,z)(x∈D,z∈R1)是满足一定光滑性的非线性函数,(x)为D上可测函数。通过模拟Brown运动及应用Monte—Carlo方法,得到方程(Ⅰ)的概率数值解迭代公式,进一步在依概率意义下证明了其概率数值解收敛到其解。
In this paper, using analogue Brown Motion and Monte-Carlo method, we obtained the itreation formula of probability numerical solution to the Dirichlet problem of the qusi-linear equation where D Rd is a bounded area. c(x) is a bounded H lder continous function on D,f(x,z)(x∈D, z∈R1 is a nonlinear sufficient smooth function. (x)is a measurable function on D, Furthermore, we proved the probability itreation numerical solution converges to its solution in probability
出处
《河北大学学报(自然科学版)》
CAS
1996年第1期1-7,共7页
Journal of Hebei University(Natural Science Edition)