摘要
设Γ是一个直径d≥3的d界距离正则图,x∈V(Γ),P(x)是Γ中包含x的所有强闭包子图的集合,并且P(x,i)是P(x)中所有直径为i的强闭包子图的集合.设L(x,i)是P(x,i)中元素的交生成的集合.按反包含关系规定L(x,i)的偏序,L(x,i)记为LR(x,i).利用Mbius反演公式计算了LR(x,i)上的特征多项式χ(PR(x),t).
Let Г be a d-hounded distance-regular graph with d≥3. Suppose that P (x) is a set of all strongly closed subgraphs containing x and that P ( x, i ) is a subset of P ( x ) consisting of all elements of P ( x ) with diameter i. Let £(x, i ) be the set generated by the intersection of the elements in P ( x, i ). By ordering £( x, i ) by reverse inclusion, denote .£(x, i ) by £R (x, i ). The eigenpolynomial of £R ( x, i ) is given.
出处
《河北师范大学学报(自然科学版)》
CAS
北大核心
2007年第2期141-143,154,共4页
Journal of Hebei Normal University:Natural Science
基金
河北省教育厅自然科学基金(2005107)
廊坊师范学院科学研究项目(LSZYZ200404)
关键词
距离正则图
强闭包子图
d-界
特征多项式
distance-regular graph
strongly closed subgraph
d-bounded
eigenpolynomial