期刊文献+

基于神经元网络和粒子群优化算法的轧制工艺-性能优化

Optimization of Rolling Process and Properties Using Artificial Neural Network Combined with Particle Swarm Optimization in Plate Rolling
下载PDF
导出
摘要 为了达到厚板生产中的强度和屈强比等性能指标,本文在用神经元网络对屈服强度和抗拉强度建模的基础上,结合粒子群优化算法对粗轧开轧温度、中间坯厚度、终轧温度、终冷温度及冷却速率等生产工艺参数进行了优化。优化结果与实验室热轧实验及工业试生产结果的对比表明,本模型能有效地优化厚板生产过程的工艺参数,从而为优化工艺或柔性化生产工艺的设计提供指导。 In the present paper, based on the model of yield strength and tensile strength established by artificial neural network combined with PSO (Particle Swarm Optimization), the optimization of rolling process parameters such as rough rolling start temperature, temperature-holding thickness, finish rolling temperature, finish cooling temperature and cooling rate was carried out in order to obtain the desired strength and yield ratio of heavy plate. The comparison between the results of optimization and the results of hot rolling trials in laboratory and industrial trial production shows that the model is able to effectively optimize the process parameters during heavy plate production, thereby guiding the design of optimized process or more flexible production process.
出处 《宽厚板》 2007年第1期1-5,共5页 Wide and Heavy Plate
关键词 厚板 神经网络 粒子群算法 Heavy plate,Artificial neural network, PSO
  • 相关文献

参考文献9

  • 1Z. Y. Liu, W. D. Wang, W. Gao. Prediction of the mechanical properties of hot-rolled C-Mn steels using artificial neural networks. Journal of materials and processing technology[J], 1996, 57:332-336 被引量:1
  • 2刘振宇, 许云波, 王国栋..热轧钢材组织[M],2004.
  • 3王建辉,徐林,闫勇亮,顾树生.改进粒子群算法及其对热连轧机负荷分配优化的研究[J].控制与决策,2005,20(12):1379-1383. 被引量:27
  • 4H Yoshida,K Kawata,Y Fukuyama, et al . A particle swarm optimization for reactive power and voltage control considering voltage security assessment1 IEEE Trans on Power Systems , 2000 ,15 (4) : 1232-1239 被引量:1
  • 5P. Korczak, H. Dyja, E. Labuda. Using neural network models for predicting mechanical properties after hot plate rolling processes. Journal of materials and processing technology [J], 1998, 80-81 : 481-486 被引量:1
  • 6S. Malinov, W. Sha, J. J. Mckeown. Modeling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Computational material science [J], 2001, 21 : 375-394 被引量:1
  • 7Kennedy J and Eberhart R. Particle Swarm Optimization.IEEE International Conference on Neural Networks [J ] .(Perth ,Australia) , IEEE Service Center ,Piscataway ,NJ ,1995. N :1942-1948 被引量:1
  • 8Shi,Y, Eberhart R C. Particle Swarm Optimization : Developments, Applications and Resource [C]. In: Proc of Congress on Evolutionary Computation, NJ: Piscataway press, 2001:81-86 被引量:1
  • 9M. Mahfouf, M- Y. Chen and D. A. Linkens : Lecture Notesin computer Science [J], 2004,762 被引量:1

二级参考文献7

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部