摘要
提出了一个基于合金组元原子半径和电负性判断非晶形成能力的方法.建立了原子半径差与电负性差之比Δd/Δe与临界冷却速度Rc的数值模型,并在所有五种不同合金系中获得一致且开口向上的抛物线关系.在此基础上,设计并制备了四种不同成分的Zr-Al-Ni-Cu金属玻璃,并测量它们的临界尺寸Zmax、过冷液相区间ΔTx和约化玻璃转变温度Trg.结果表明,Zr54Al13Ni15Cu18的玻璃形成能力最佳,而且用Δd/Δe模型预测的四种金属玻璃的玻璃形成能力顺序与所有实测参数(包括Zmax、ΔTx和Trg)表征的顺序基本一致.因此,用Δd/Δe的预测方法比较同一合金系内不同合金之间玻璃形成能力的优劣是可靠的.
A method based on atomic radius and electro-negativity of alloying constituents was proposed to estimate the glass forming ability (GFA) of a bulk metallic glass. The mathematical model of the ratio of radiuses difference to electro-negativity difference and the critical cooling rate Rc was established. The same relationships with a shape of upturned parabola in all five kinds of alloys were obtained with this model. Based on the above results, four different compositions of Zr-Al-Ni-Cu bulk metallic glasses were designed and prepared, and their critical size Zmax, super-cooling liquid region ATx and the reduced glass temperature Trg were all measured respectively. The results show that the glass forming ability of Zr54Al13Ni15Cu18 is the best in the four alloys and the GFA order of these alloys predicted using the △d/△e model is basically consistent with experimental parameters (including Z △Tx, and Trg). It is concluded that the prediction using the △d/△e model is a reliable method to compare the glass forming ability between different compositions in a same alloying series.
出处
《北京科技大学学报》
EI
CAS
CSCD
北大核心
2007年第2期242-246,共5页
Journal of University of Science and Technology Beijing
关键词
金属玻璃
玻璃形成能力
成分设计
原子半径
电负性
metallic glass
glass forming ability
design of compositions
radius
electro-negativity