期刊文献+

以原子半径和电负性预测玻璃形成能力 被引量:3

Prediction of glass forming ability using atomic radius and electro-negativity
下载PDF
导出
摘要 提出了一个基于合金组元原子半径和电负性判断非晶形成能力的方法.建立了原子半径差与电负性差之比Δd/Δe与临界冷却速度Rc的数值模型,并在所有五种不同合金系中获得一致且开口向上的抛物线关系.在此基础上,设计并制备了四种不同成分的Zr-Al-Ni-Cu金属玻璃,并测量它们的临界尺寸Zmax、过冷液相区间ΔTx和约化玻璃转变温度Trg.结果表明,Zr54Al13Ni15Cu18的玻璃形成能力最佳,而且用Δd/Δe模型预测的四种金属玻璃的玻璃形成能力顺序与所有实测参数(包括Zmax、ΔTx和Trg)表征的顺序基本一致.因此,用Δd/Δe的预测方法比较同一合金系内不同合金之间玻璃形成能力的优劣是可靠的. A method based on atomic radius and electro-negativity of alloying constituents was proposed to estimate the glass forming ability (GFA) of a bulk metallic glass. The mathematical model of the ratio of radiuses difference to electro-negativity difference and the critical cooling rate Rc was established. The same relationships with a shape of upturned parabola in all five kinds of alloys were obtained with this model. Based on the above results, four different compositions of Zr-Al-Ni-Cu bulk metallic glasses were designed and prepared, and their critical size Zmax, super-cooling liquid region ATx and the reduced glass temperature Trg were all measured respectively. The results show that the glass forming ability of Zr54Al13Ni15Cu18 is the best in the four alloys and the GFA order of these alloys predicted using the △d/△e model is basically consistent with experimental parameters (including Z △Tx, and Trg). It is concluded that the prediction using the △d/△e model is a reliable method to compare the glass forming ability between different compositions in a same alloying series.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2007年第2期242-246,共5页 Journal of University of Science and Technology Beijing
关键词 金属玻璃 玻璃形成能力 成分设计 原子半径 电负性 metallic glass glass forming ability design of compositions radius electro-negativity
  • 相关文献

参考文献9

  • 1Wang W H, Dong C, Sheck C H. Bulk metallic glasses. Mater Sci Eng, 2004, R44:45. 被引量:1
  • 2XiX K, Zhao D Q, Pan M X, et al. On the criteria of bulk metallic glasses formation in MgCu-based alloys. Intermetalllcs,2005, 13:638. 被引量:1
  • 3杨频,高孝恢编著..性能-结构-化学键[M].北京:高等教育出版社,1987:557.
  • 4Cai A H, Sun G X, Pan Y. Evaluation of the parameters related to glass-forming ability of bulk metallic glasses. Mater Des,2006, 27:479. 被引量:1
  • 5Lu Z P, Liu C T. A new glass-forming ability criterion for bulk metallic glasses. Acta Mater, 2002, 50:3501. 被引量:1
  • 6Lu Z P, Hu X, Li Y, et al. Glass forming ability of La-A1-Ni-Cu and Pd-Cu-Si bulk metallic glasses. Mater Sei Eng, 2001,A304/306 : 679. 被引量:1
  • 7Li Y, Ng S C, Ong C K. Glass forming ability of bulk glass forming alloys. Seripta Mater, 1997, 36(7):783. 被引量:1
  • 8Zhang Y, Zhao D Q, Pan M X, et al. Glass forming properties of Zr-based bulk metallic alloys. J Non Cryst Solids, 2003, 315(1/2): 206. 被引量:1
  • 9虞觉奇等编译..二元合金状态图集[M].上海:上海科学技术出版社,1987:712.

同被引文献17

  • 1罗光 王荣耀.元素超导电性的新判据[J].物理学报,1987,3:357-362. 被引量:8
  • 2Burton E F, Grason H, et al. Phenomena at the temperature of liguidhelium [ J ]. ChVNY, 1940,16:726. 被引量:1
  • 3A sokamani R, Manjula R. Correlation between electronegativity and superconductity [ J ]. PhysRev, 1989, B39 : 42174221. 被引量:1
  • 4Johnson W L. Bulk glass-forming metallic alloys: Science and technology. MRS Bull, 1999, 24(10): 42-56. 被引量:1
  • 5Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater, 2000, 48(1): 279-306. 被引量:1
  • 6Wang W H, Dong C, Shek C H. Bulk metallic glasses. Mater Sci Eng R, 2004, 44(2-3): 45-89. 被引量:1
  • 7Greer A L, Ma E. Bulk metallic glasses: At the cutting edge of metals research. MRS Bull, 2007, 32(08): 611-619. 被引量:1
  • 8Tang M B, Zhao D Q, Pan M X, et al. Binary Cu-Zr bulk metallic glasses. Chin Phys Lett, 2004, 21:901-903. 被引量:1
  • 9Busch R. The thermophysical properties of bulk metallic glass-forming liquids. J Minerals Metals Mater Soc, 2000, 52(7): 39-42. 被引量:1
  • 10Senkov O N, Miracle D B. Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater Res Bull, 2001, 36(12): 2183-2198. 被引量:1

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部