期刊文献+

基于支持向量机的脑——机接口模式分类和模型参数研究 被引量:1

Pattern classification of brain computer interface based on support vector machine and selection of model parameters
下载PDF
导出
摘要 脑—机接口(BCI)是连接大脑和计算机及外部设备的通讯系统,通过连续小波变换(CWT)对采集的脑电信号进行分解,构造由多个尺度对应的方差构成的多维向量,应用支持向量机(SVM)进行分类识别,取得了良好的效果。基于统计学习理论的结构化风险最小化原则,研究了高斯核支持向量机误差惩罚参数C和高斯核参数σ对支持向量机性能的影响,使用仿真实验验证了传统的经验风险最小化原则不能保证良好的推广能力,提出了综合调整参数σ和参数C的方法以优化支持向量机的性能。 Brain-Computer Interface (BCI) is a communication system that connects the brain with computer and peripheral equipments. Continuous Wavelet Transform (CWT) was adopted to decompose the acquired signals of the electroencephalogram (EEG). A multidimensional vector, composed of the variances corresponding to multi-scales, was constructed. Besides, Support Vector Machine (SVM) was applied to do the classified recognition and achieved good effects. The influences of the error penalty parameter C and the Gaussian kernel parameter σ on the generalization ability of support vector machine were studied on the basis of the structural risk minimization principle of the statistic learning theory. Simulation results show that the traditional experience risk minimization principle cannot guarantee good generalization ability. Therefore, the method of adjusting both the parameter C and the parameter σ was proposed to optimize the performance of support vector machine.
出处 《计算机应用》 CSCD 北大核心 2007年第2期337-339,348,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60471055) 教育部博士点基金项目(20040614017)
关键词 脑-机接口 连续小波变换 支持向量机 统计学习理论 模型参数 Brain-Computer Interface (BCI) Continuous Wavelet Transform (CWT) Support Vector Machine (SVM) statistic learning theory model parameters
  • 相关文献

参考文献8

二级参考文献67

  • 1谢水清,杨阳,杨仲乐.脑-机接口中高性能虚拟键盘的实现[J].中南民族大学学报(自然科学版),2004,23(2):38-40. 被引量:8
  • 2Vapnik V.An Overview of Statistical Learning Theory[J].IEEE Trans Neural Networks,1999;lO(5):988~999. 被引量:1
  • 3.[EB/OL].http ://ida.first.gmd.de/-raetsch/date/benchmarks.htm.,. 被引量:1
  • 4Pontil M ,Vcrri A.Properties of Support Vector Machines[J].Neural Computation, 1997;(1):955-974. 被引量:1
  • 5UNSER M. A Review of Wavelets in Biomedical Applications[J]. Proceedings of the IEEE, 1996, 84(4) : 626-639. 被引量:1
  • 6WAHLBERG P, SALOMONSSON G. Feature Extraction and Clustering of EEG Epileptic Spike[J]. Computers and Biomedical Research, 1996,29:382 - 394. 被引量:1
  • 7SHUREN QIN, HONGJUN ZHU, ZHONG JI. Precise Detection of the QRS Complex in Electrocardiogram Signal With Wavelet Transforms [ C ]. ISA'2002 Show South America, 2002. 被引量:1
  • 8SARTENE R, POUPARD L, BERNARD J L, et al. Sleep Images Using the Wavelet transform to Process Polysomnographic Signals. In: Aldroubi, A. and Unser, M. (Ed.)[A]. Wavelets in Medicine and Biology [C]. CRC Press,1996. 355 - 382. 被引量:1
  • 9ZHONG ZHANG, HIROAKI KAWABATA, ZHI - QIANG LIU. EEG Analysis using Fast Wavelet Transform [ J ],IEEE, 2000:2959-2964. 被引量:1
  • 10E Curran, P Sykacck, S J Roberts. Cognitive tasks for driving a braincomputer interface system: a pilot study[J]. IEEE Transaction on Neural System and Rehabilitation Engineering,2003,12(1) :48 - 54. 被引量:1

共引文献111

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部