期刊文献+

KFDA在领口质量评价系统中的应用 被引量:2

Application of KFDA in evaluation system of neckline performance
下载PDF
导出
摘要 织物领口性能评价是织物性能评价中的一个重要部分,为实现评价系统分类的自动化,提出了采用核Fisher判别分析(KFDA)方法来识别新样本的类别,将已分类的样本分为训练样本和测试样本。应用核函数将输入空间映射到特征空间,并在特征空间中求取训练样本投影矢量和构建判别函数组,然后用测试样本来验证判别函数组的识别效果。最后对KFDA、BP神经网络(BPNN)和径向基神经网络(RBFNN)3种方法的识别效果进行了对比,结果显示KFDA方法对于新样本具有较高的识别率。 Neckline performance evaluation is an important part for knitted sweater. In order to implement classification automation of testing system, kernel Fisher discriminant analysis (KFDA) is proposed for identifying the grade of new testing samples. Classified samples are divided into two parts: training samples and testing samples. Input space is mapped into feature space by kernel function, projection vector is acquired and discriminant functions is constructed in feature space, subsequently, identification effect is verified by testing samples. Finally, identification effects of KFDA, back promulgation neural network (BPNN) and radial basis function neural network (RBFNN) are compared. Experiment results show that KFDA method is more effective for identification of new samples.
作者 李晓久 刘皓
出处 《纺织学报》 EI CAS CSCD 北大核心 2007年第3期76-78,共3页 Journal of Textile Research
关键词 核FISHER判别分析 特征提取 分类 领口 kernel Fisher discriminant analysis feature extraction classification neckline
  • 相关文献

参考文献7

  • 1李晓久,刘皓.基于数据分析的羊毛衫领口性能评价方法的确定[J].东华大学学报(自然科学版),2005,31(5):59-63. 被引量:4
  • 2Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach [J]. Neural Computation, 2000,12(10) : 2385 - 2404. 被引量:1
  • 3Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernel [ J ]. IEEE International Workshop on Neural Networks for Signal Processing Ⅸ, 1999:41 -45. 被引量:1
  • 4Yang Jian, Jin Zhong, Yang Jingyu, et al. Essence of kemel Fisher discriminant: KPCA plus LDA [J]. Pattern Recognition, 2004,37 : 2097 - 2100. 被引量:1
  • 5Abdallah F, Richard C. An improved training algorithm for nonlinear kernel discriminants [ J ]. IEEE Transactions on Signal Processing, 2004,52 (10) : 2798 - 2806. 被引量:1
  • 6Liang Zhizheng, Sift Pengfei. An efficient and effective method to solve kemel Fisher diseriminant analysis [J].Neural Computation, 2004,61 : 485-496. 被引量:1
  • 7孙才志.观测数据聚类的有效性评价、检验方法研究[J].系统工程,2000,18(3):61-64. 被引量:4

二级参考文献3

共引文献4

同被引文献22

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部