期刊文献+

一种挖掘用户浏览模式的新方法 被引量:6

A NEW WAY TO DISCOVER USER BROWSING MODE
下载PDF
导出
摘要 提出了页面兴趣度的概念,并把它用一个三元组(页面的访问时间,页面的大小,页面访问次数)表示。这个概念准确地反映了用户对页面的访问情况。在此基础上建立了以引用网页URL为行、浏览网页URL为列,页面兴趣度为元素值的网站访问矩阵。通过对该矩阵计算得到用户浏览偏爱路径。实验表明该算法能准确地反映用户浏览兴趣。 Page interest is presented, it is expressed by a triple group with accessing time, size of page and time. And it reflects user's accessing way exactly. Based on it, a URL-URL matrix where uses URL as rows, navigating URL as columns and page interest as matrix elements is built. Preferred browsing paths could be discovered from the computation of this matrix. Experiments showed that it was accurate.
出处 《计算机应用与软件》 CSCD 北大核心 2007年第2期143-144,150,共3页 Computer Applications and Software
基金 陕西省自然科学基金项目(编号:2006F50)。
关键词 浏览偏爱路径 支持偏爱度 页面兴趣度 Preferred browsing paths Support-preference Page average interest
  • 相关文献

参考文献6

  • 1Anand S S, Patrick A R, Hughes J G. A data mining methodology for cross sales. Knowledge Based Systems Journal, 1998,10 (7) :449 - 461. 被引量:1
  • 2Mamata Jenamani, Pratap K. J. Mohapatra, Sujoy Ghose. A stochastic model of E-customer behavior. Electronic Commerce Research and Applications. 2003 (2) :81 - 94. 被引量:1
  • 3Jae Kyeong Kim,Yoon Ho Cho,Woo Ju Kim,Je Ran Kim,Ji Hae Suh. A personalized recommendation procedure for Internet shopping support.Electronic Commerce Research and Applications. 2002( 1 ) :301 - 313. 被引量:1
  • 4Ji-Hyun Lee,Wei-Kun Shiu. An adaptive website system to improve efficiency with web mining techniques. Advanced Engineering Informatics 2004(18) :129 - 142. 被引量:1
  • 5邢东山,沈钧毅,宋擒豹.从Web日志中挖掘用户浏览偏爱路径[J].计算机学报,2003,26(11):1518-1523. 被引量:87
  • 6邢东山,宋擒豹,沈钧毅.一种新的Web事务模糊聚类算法的研究[J].西安交通大学学报,2002,36(8):822-825. 被引量:12

二级参考文献11

  • 1Anand S S, Patrick A R, Hughes J G. A data mining methodology for cross-sales. Knowledge Based Systems Journal, 1998,10(7):449~461 被引量:1
  • 2Park J S, Chen M S, Yu P S. Using A hash-based method with transaction trimming for mining association rules. IEEE Transactions on Knowledge and Data Eng., 1997, 9(5):813~825 被引量:1
  • 3Bfichner A G, Baumgarten M, Artand S S. Navigation pattern discovery from internet data. In: Proceedings of the 5th ACM International Conference on Knowledge Discovery and Data Mining (WEBKDD′99 Workshop) (SIGKDD′99), New York, 1999.25~30 被引量:1
  • 4Srikant R, Agrawal R. Mining generalized association rules. In: Proceedings of the 21st International Conference Very Large DataBase, Switzerland, 1995. 407~419 被引量:1
  • 5Srikant R, Agrawal R. Mining quantitative association rules in large relational tables. In: Proceedings of the ACM SIGMOD, Canada, 1996.1~12 被引量:1
  • 6Yang D L, Yang S H, Hong M C. An efficient web mining for session path patterns. In: Proceedings of International Computer Symposium 2000, Workshop on Software Eng. and Database Systems, Taiwan, 2000. 107~113 被引量:1
  • 7Brin S, Motwani R, Silverstein C. Beyond market baskets: Generalizing association rules to correlations. In: Proceedings of the ACM SIGMOD, Canada, 1996.255~276 被引量:1
  • 8Savasere A, Omiecinski E, Navathe S. Mining for strong negative associations in a large database of customer transactions. In: Proceedings of the International Conference Data Engineering, Florida, 1998. 494~502 被引量:1
  • 9Chen M S, Park J S, Yu P S. Data mining for path traversal patterns in a Web environment. In: Proceedingss of the 16th International Conference on Distributed Computing Systems, Hong Kong, 1996. 385~392 被引量:1
  • 10Mobasher B, Srivastava J. Data preparation for mining world wide web browsing patterns. Knowledge and Information System, 1999, 1(1):5~32 被引量:1

共引文献95

同被引文献30

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部