摘要
提出了求关系矩阵周期的直接算法和改进算法,直接算法是根椐关系矩阵周期的定义得出的,改进算法首先根椐关系矩阵的幂与一般矩阵的幂相比较进行曲初步改进,其次在进一步分析逻辑加规则含义的基础上又再次进行了改进.最后本文给出了在不同算法下求不同维数的关系矩阵周期所需的时间,同时在MATLLAB,中对上述数据进行了数据仿真,结果说明当矩阵维数较大时改进算法比直接算法明显缩短了时间,提高了计算效率.
This article proposes the direct algorithm and the impovement algorithm to strive for the periodicity of relational matrix. The direct algorithm is obtained according to the definition of the periodicity of relational matrix. The improvement algorithm is preliminarily improved by the comparison between the power of relational matrix and the general matrix power. Next it is improved once more by analyzing the logical add regular meaning. Finally this aritele gives the needed time under the different algorithm to strive for different dimension the periodicity of relational matrix. Meanwhile above data are simucated in MATLAB. The result shows when matrix dimension is bigger, the time used to get the improvement algorithm is obviously less than that of the direct algoorithm, which can improre the counting efficieney.
出处
《湖南工程学院学报(自然科学版)》
2007年第1期71-73,共3页
Journal of Hunan Institute of Engineering(Natural Science Edition)
关键词
关系矩阵
周期
算法
relational matrix
peiodicity
algorithm