期刊文献+

拟具非零元素链对角占优矩阵的若干性质 被引量:1

Some Properties of the Quasi Diagonally Dominant Matrix With Chain of Non-Zero Elements
下载PDF
导出
摘要 在假设A∈Rn×n是一个L-矩阵,且A不是对角矩阵的前提下,给出了矩阵A为拟具非零元素链对角占优矩阵时的若干性质,并举例说明了具非零元素链对角占优矩阵所具有的个别性质对拟具非零元素链对角占优矩阵已经不再成立。 If A∈R^n×n is a L-matrix, and A isn't a diagonally dominant matrix, then some properties of the quasi diagonally dominant matrix with chain of non-zero elements were given. Examples illustrate that some special properties of the diagonally dominant matrix with chain of non- zero elements probably doesn't come into existence for quasi diagonally dominant matrix with chain of non-zero elements.
出处 《辽宁石油化工大学学报》 CAS 2007年第1期93-96,共4页 Journal of Liaoning Petrochemical University
基金 辽宁石油化工大学重点学科建设资助项目(K200409)
关键词 拟具非零元素链对角占优矩阵 比较矩阵 主子式 Quasi diagonally dominant matrix with chain of non-zero elements Comparison matrix Principal minor
  • 相关文献

参考文献9

二级参考文献18

  • 1李阳,宋岱才.广义H-矩阵的若干性质[J].石油化工高等学校学报,2005,18(1):80-82. 被引量:10
  • 2李阳.非奇异H-矩阵的简洁判据[J].辽宁石油化工大学学报,2005,25(3):90-93. 被引量:9
  • 3程云鹏.矩阵论[M].西安:西北工业大学出版社,1998.. 被引量:16
  • 4Cottle R W, Danzig G B. A generalization of the linear complementarity problem[J]. J. combin, theory, 1970, (8) :79 80. 被引量:1
  • 5Mohan S R, Neogy S K, Sridhar R. The generalized linear complementarity problem revisited[J]. Pro. math. , 1996, (749) :197 - 218. 被引量:1
  • 6Gan T B,Huang T Z.Simple criteria for nonsingular H-matrix[J].Linear algebra appl.,2003,374:317-326. 被引量:1
  • 7Ojiro K,Niki H,Usui M.A new criterion for the H-matrix property[J].J.comput.appl.math.,2003,150:293-302. 被引量:1
  • 8Xuerong Yong.A conjecture of fiedler and markham[J].Linear algebra and its application,2000,320(3):167-171. 被引量:1
  • 9Wang B Y,Zhang F Z.Trace and eigenvalue inequalities for ordinary and Hadamard products of positive semidefinite Hermitian matrices[J].Siaml matrix anal.appl.,1995,16(2):1173-1183. 被引量:1
  • 10Lasserre J B.Atrace inequality for matrix product[J].IEEE.trans.automat.contr.,1995,40(2):1150-1151. 被引量:1

共引文献30

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部