摘要
The grain refining process of an AZ91D Mg alloy by Sr addition was studied and the heterogeneous nucleating particles of α-Mg were investigated by electron probe microanalysis (EPMA). With 0.6 wt% Sr addition, the mean grain size of AZ91D alloy was refined from 235.4μm to 52.5 μm at the one-half radius of the ingot. The morphology of primary crystal changed from a sixford symmetrical shape to a petallike shape, Mg-Sr-Al-Fe-Mn heterogeneous nucleating particles were observed at the grain centers and Sr solute atoms presented segregation along the grain boundaries. Grain refinement was facilitated by both the Mg-Sr-Al- Fe-Mn nucleating particles and the Sr solute atoms, and the former played a dominate role in the process.
The grain refining process of an AZ91D Mg alloy by Sr addition was studied and the heterogeneous nucleating particles of α-Mg were investigated by electron probe microanalysis (EPMA). With 0.6 wt% Sr addition, the mean grain size of AZ91D alloy was refined from 235.4μm to 52.5 μm at the one-half radius of the ingot. The morphology of primary crystal changed from a sixford symmetrical shape to a petallike shape, Mg-Sr-Al-Fe-Mn heterogeneous nucleating particles were observed at the grain centers and Sr solute atoms presented segregation along the grain boundaries. Grain refinement was facilitated by both the Mg-Sr-Al- Fe-Mn nucleating particles and the Sr solute atoms, and the former played a dominate role in the process.
基金
Funded by the National Natural Science Foundation of China (No. 50171037)
Key Project of Science and Technology Research of Ministry of Education of China (No. 01105)